Rozdziały

Stały URI dla kolekcjihttp://hdl.handle.net/11652/4411

Przeglądaj

collection.search.results.head

Teraz wyświetlane 1 - 2 z 2
  • Pozycja
    Development of stretchable conductive hybrid yarn for wearable electronics application
    (Wydawnictwo Politechniki Łódzkiej, 2022) Ahmed, İbrahim Adel Khamis; Çetin, Münire Sibel; Yılmaz, Ayşe Feyza; Atalay, Aslı Tunçay; İnce, Gökhan; Atalay, Özgür
    Wearable electronics and electronic textiles are becoming increasingly important as technology advances. To supply the conductivity required in wearable electronics, investigations on the integration of electronic components with textiles by adding conductivity to fabric structures, as well as the development of items generated in this manner in terms of human comfort, have grown. The base materials, i.e., yarns, should be as flexible, thin, and light as possible during the manufacturing and incorporation of electronic textile components (sensors, transmission lines, connections, etc.) into wearable products in order to tolerate the rigid structure and low elasticity of the metallic parts that provide conductivity. In traditional yarn production processes, hybrid yarn production is regularly carried out with numerous modifications. Problems arise in these manufacturing processes due to the fact that the core fiber cannot be precisely positioned in the center of the yarn, the fluctuation of yarn strength throughout the yarn, and the increase in yarn irregularity. The "Direct-Twist - 2C" twisting machine, which can manufacture hybrid-yarn without modification, was employed in this investigation. Unlike previous approaches, hybrid-yarn manufacturing with Direct-Twist aims to overcome the problems found in other ways since the core can be positioned exactly in the center of the yarn. A new hybrid-yarn was generated in this work by employing spandex in the core and silver-plated conductive yarn in the coating. Tensile and resistance measurements performed within the scope of the study demonstrate that a stretchable conductive hybrid-yarn structure with a homogeneous distribution of core and coating structures is achieved.
  • Pozycja
    Innovative thermally stablized low twist hybrid yarns from recycled carbon fibre for thermosplastic composites
    (Wydawnictwo Politechniki Łódzkiej, 2022) Hasan, Mir Mohammad Badrul; Khurshid, Muhammad Furqan; Abdkader, Anwar; Cherif, Chokri
    Hybrid yarns consisting of rCF and thermoplastic fibre offer a good potentials to improve mechanical properties of carbon fibre reinforced composites due to high fiber length, homogeneous mixing and high rCF content [1]. However, the twisting of the yarn in conventional spinning processes leads on one hand to the damage in rCF during spinning because of its high brittleness and sensitivity to shear forces. On the other hand, mechanical properties e.g. tensile and flexural strengths of composites decrease significantly with the increase of twist as a result of low fibre orientation [2]. On the contrary, the yarn strength and the stability of the spinning process are strongly dependent on the level of yarn twist. In our previous paper [3], the development of low twist hybrid yarns (75-30 T/m) consisting of rCF and polyamide 6 (PA6) fibre for high performance thermoplastic composites has been reported. However, hybrid yarns with low twist levels suffer from low spinning stability and poor yarn strength, which limits their further processablity in weaving or knitting processes. Therefore, the focus of this work is the development of a method to reduce yarn twist but still ensuring a stable spinning process, high yarn and composite strengths.