Artykuły (CNMiF)
Stały URI dla kolekcjihttp://hdl.handle.net/11652/139
Przeglądaj
3 wyniki
collection.search.results.head
Pozycja Electrical and thermal properties of anthrone(Wydawnictwo Politechniki Łódzkiej, 2020) Kania, Sylwester; Kuliński, Janusz; Sikorski, DominikQuantum-chemical density functional theorem (DFT) calculations indicate that the value of the reorganization energy indicates the possibility of efficient hole capture by the anthrone molecule during transport process of charge carriers. Differential scanning calorimetry (DSC) studies indicate the temperature stability of anthrone molecules above the melting point up to 164°C. The glass transition is determined at 153.7 °C and melting point at 157.05 °C.Pozycja Electrical and thermal properties of anthraquinone layers(Lodz University of Technology Press, 2019) Kania, Sylwester; Kuliński, Janusz; Sikorski, DominikQuantum-chemical calculations indicate that the bond lengths in the anthraquinone anthracene backbone are shorter than the corresponding bonds in unsubstituted anthracene. The shape of the frontier molecular orbitals (FMO) indicates the possibility of more efficient electron capture by the anthraquinone molecule than by the anthracene molecule while maintaining stability in the conditions prevailing in electrochemical cells. Differential scanning calorimetry (DSC) studies indicate the temperature stability of anthraquinone above the melting point up to 300C. The glass transition is determined at about 100°C.Pozycja The origin of the interaction responsible for the difference of hole mobility of thwo derivatives of anthracene(Wydawnictwo Politechniki Łódzkiej, 2018) Kania, Sylwester; Kuliński, Janusz; Sikorski, DominikHole mobility of the layers built from two anthracene derivatives differing in the substitution of the central benzene ring, i.e. anthrone substituted with only one keto group and anthraquinone substituted with two keto groups differs by one order of magnitude despite the fact that both have almost identical crystal structure. We ascribe this difference to existence of an additional intermolecular interaction arising in the layer of anthrone.