A Deep Learning Approach for Urban Block: Automated Extraction Tool for Urban Forms

dc.contributor.authorTurk Didem
dc.date.accessioned2024-03-18T07:09:29Z
dc.date.available2024-03-18T07:09:29Z
dc.date.issued2023
dc.description.abstractIncreasing access to geographic data and mapping technologies has pushed urban morphology research toward more quantitative and data-driven approaches. At the same time, the unprecedented rapid change in the urban form has prompted a growing number of research to capture, analyze, and understand the phenomenon in recent years. However, a thorough, systematic approach to evaluating and comparing urban forms in this setting is yet to be developed. The aim of this study is to build a comprehensive approach to defining urban form indicators by developing a simplified yet representative classification of the urban form. Notably, urban block as a constitutional feature of urban form is evaluated in relation to numerical indices. The applied methodology comprises the detection and classification of urban form using a deep convolutional neural network. The study attempts to use automated methods to address the gap in urban form classification and characterization. The methodological process encompasses a non-local classification of urban form, followed by an examination of the identified features of the urban block. The preliminary outcome of this study consists of an in-depth analysis of urban block indicators in the comparative literature. This will be one of the inputs of the deep learning model to classify urban blocks.en_EN
dc.identifier.citationTurk Didem., A Deep Learning Approach for Urban Block: Automated Extraction Tool for Urban Forms. W: XXIX International Seminar on Urban Form. ISUF 2022 Urban Redevelopment and Revitalisation. A Multidisciplinary Perspective. 6th June – 11th September 2022, Łódź–Kraków, Kantarek A.A. (Ed.), Hanzl M. (Ed.), Figlus T. (Ed.), Musiaka Ł. (Ed.)., Lodz University of Technology Conference Proceedings No. 2554, Lodz University of Technology Press, Lodz 2023, p. 1560-1569, ISBN 978-83-67934-03-9, DOI: 10.34658/9788367934039.126.
dc.identifier.doi10.34658/9788367934039.126
dc.identifier.isbn978-83-67934-03-9
dc.identifier.urihttp://hdl.handle.net/11652/5153
dc.identifier.urihttps://doi.org/10.34658/9788367934039.126
dc.language.isoen
dc.page.numberp. 1560-1569
dc.publisherLodz University of Technology Pressen_EN
dc.publisherWydawnictwo Politechniki Łódzkiejpl_PL
dc.relation.ispartofKantarek A.A. (Ed.), Hanzl M. (Ed.), Figlus T. (Ed.), Musiaka Ł. (Ed.)., XXIX International Seminar on Urban Form. ISUF 2022 Urban Redevelopment and Revitalisation. A Multidisciplinary Perspective. 6th June – 11th September 2022, Łódź–Kraków, Lodz University of Technology Conference Proceedings No. 2554, Lodz University of Technology Press, Lodz 2023, ISBN 978-83-67934-03-9, DOI: 10.34658/9788367934039.
dc.relation.ispartofseriesLodz University of Technology Conference Proceedings No. 2554
dc.rightsDla wszystkich w zakresie dozwolonego użytkupl_PL
dc.rightsFair use conditionen_EN
dc.rights.licenseLicencja PŁpl_PL
dc.rights.licenseLUT Licenseen_EN
dc.subjecturban blocken_EN
dc.subjectautomatic toolsen_EN
dc.subjectdeep learningen_EN
dc.subjecturban fromen_EN
dc.subjectblok miejskipl_PL
dc.subjectnarzędzia automatycznepl_PL
dc.subjectgłębokie uczenie siępl_PL
dc.subjectmiejski zpl_PL
dc.titleA Deep Learning Approach for Urban Block: Automated Extraction Tool for Urban Formsen_EN
dc.typekonferencja - rozdziałpl_PL
dc.typeconference - chapteren_EN

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
126. Deep_learning_approach_Turk_ISUF22_2023.pdf
Rozmiar:
596.63 KB
Format:
Adobe Portable Document Format

Licencja

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
license.txt
Rozmiar:
1.71 KB
Format:
Item-specific license agreed upon to submission
Opis:

Kolekcje