Show simple item record

dc.contributor.authorAwrejcewicz, Jan
dc.contributor.authorKrylova, E.Yu.
dc.contributor.authorPapkova, I.V.
dc.contributor.authorKrys'ko, Vadim Anatolevič
dc.date.accessioned2016-02-05T12:04:49Z
dc.date.available2016-02-05T12:04:49Z
dc.date.issued2014
dc.identifier.citationShock and Vibration, Volume 2014, Article ID 937967, 8 pages
dc.identifier.urihttp://hdl.handle.net/11652/1117
dc.identifier.urihttp://www.hindawi.com/journals/sv/2014/937967/
dc.description.abstractNonlinear dynamics of flexible rectangular plates subjected to the action of longitudinal and time periodic load distributed on the plate perimeter is investigated. Applying both the classical Fourier and wavelet analysis we illustrate three different Feigenbaum type scenarios of transition from a regular to chaotic dynamics. We show that the system vibrations change with respect not only to the change of control parameters, but also to all fixed parameters (system dynamics changes when the independent variable, time, increases). In addition, we show that chaotic dynamics may appear also after the second Hopf bifurcation. Curves of equal deflections (isoclines) lose their previous symmetry while transiting into chaotic vibrations.en_EN
dc.language.isoenen_EN
dc.relation.ispartofseriesShock and Vibration, Volume 2014, Article ID 937967en_EN
dc.titleRegular and Chaotic Dynamics of Flexible Platesen_EN
dc.typeArtykułen_EN


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record