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Nonlinear dynamics of flexible rectangular plates subjected to the action of longitudinal and time periodic load distributed on the
plate perimeter is investigated. Applying both the classical Fourier and wavelet analysis we illustrate three different Feigenbaum
type scenarios of transition from a regular to chaotic dynamics. We show that the system vibrations change with respect not only
to the change of control parameters, but also to all fixed parameters (system dynamics changes when the independent variable,
time, increases). In addition, we show that chaotic dynamics may appear also after the second Hopf bifurcation. Curves of equal
deflections (isoclines) lose their previous symmetry while transiting into chaotic vibrations.

1. Introduction

Plates as thin-walled structural members are widely applied
in various branches of industry, civil engineering, and fac-
tories producing measurement devices. Nowadays modeling
procedures and dynamics investigation are very complex
and require confirmation of the reliability and validity of
results obtained. One of the ways to get more reliable
results is to develop more adequate mathematical models for
studying of continuous mechanical systems. The developed
models are expected to exhibit important nonlinear effects
including the influence of geometric nonlinearity as well as
external load properties on the system chaotic dynamics.
Nonlinear vibrations of real continuous systems can be very
complicated. Majority of the signals (time series) obtained
through the numerical experiments are nonstationary ones;
that is, they strongly change in time. Therefore, in spite
of the traditional approaches, including FFT (fast Fourier
transform), additional methods are highly required. We
illustrate the advantages of application of wavelet transforms
for detecting and monitoring local properties of the analyzed
time series (signals). The latter approach allows for the
detection of local signal properties.

It is clear that modeling of plates/shells dynamics has a
long history, and there are numerous papers andmonographs
dedicated to this research area.We refer only to a few of them
more adequately fitting our research aims and the usedmeth-
ods. The existence of heteroclinic loops, Smale horseshoes,
chaotic dynamics, and symmetry breaking phenomena of a
nearly squared plate are discussed in [1, 2].

Chaotic vibrations of a shallow cylindrical shell subjected
to harmonic lateral excitation are studied via the Galerkin
approach allowing for a reduction of the initial infinite
problem to that of finite dimension (multiple degrees of
freedom) by Yamaguchi andNagai [3]. Luo derived analytical
conditions for the chaotic dynamics of axially travelling
thin plates using the incremental energy approach. Poincaré
mapping sections are used for monitoring of chaotic motions
in primary resonant and homoclinic separation zones [4].
Nonlinear dynamics of bimetallic circular plates under time-
varying temperature load is studied by Wang [5], where
the onset of chaos, transient chaos, period doubling, and
reversed period doubling scenario, among other items, are
illustrated and discussed. A transition from regular to wave
turbulence regime exhibited by thin plates harmonically
loaded is illustrated and discussed in references [6, 7].
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Figure 1: Plate computational scheme.

Transitions into the system with finite (many) degrees of
freedom chaotic dynamics are reported in a series of ref-
erences [8–12]. The advantages of wavelet-oriented analysis
of nonlinear vibrations of continuous mechanical systems
are described in [13]. Although we aim here at numerical
investigations, it should be noted that there is a possibility to
apply the method of an artificial perturbation parameter to
study nonlinear plate vibrations [14].

2. Differential and Difference
Governing Equations

The mathematical model of vibrations of a flexible rect-
angular plate (shown in Figure 1) with constant stiffness
subjected to the action of time periodic longitudinal load
distributed along the plate perimeter is constructed on the
basis of the kinematic Kirchhoff-Love approach taking into
account the nonlinear dependence between deformations
and displacements. We introduce small initial static load in
the initial time interval 𝑡 ∈ [0; 1]. In rectangular coordinates
the system of 3D space is presented in the following form:

Ω = {𝑥
1
, 𝑥
2
, 𝑥
3

| (𝑥
1
, 𝑥
2
) ∈ [0; 𝑎] × [0; 𝑏] , 𝑥

3
∈ [−ℎ; ℎ]} ,

0 ≤ 𝑡 < ∞.

(1)

We apply the following nondimensional PDEs governing
dynamics of our plate:
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are the nonlinear operators and 𝑤 and 𝐹 are the functions
describing deflection and stresses, respectively.

Simple boundary conditions are attached to (2):
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and the following initial conditions are applied:
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Equations (2)–(5) are reduced to the nondimensional
form using the following nondimensional parameters: 𝜆 =

𝑎/𝑏; 𝑥
1

= 𝑎𝑥
1
, 𝑥
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= 𝑏𝑥
2
are the nondimensional parameters

regarding 𝑥
1
and 𝑥
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, respectively; 𝑤 = 2ℎ𝑤 is the deflection;
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3
𝐹 is the stress function; 𝑡 = 𝑡

0
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4
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2
)𝑞 is the external pressure; 𝜀 = (2ℎ)𝜀 is the

damping coefficient; and 𝑝 = 𝐸(2ℎ)
3
𝑝 is the external lon-

gitudinal load. Bars over the nondimensional quantities are
already omitted in the governing equations. Additionally,
𝑎 and 𝑏 are the plate dimensions regarding 𝑥

1
and 𝑥

2
,

respectively; 𝜇 is Poisson’s coefficient.
In “Mechanics” the degrees of freedom are understood as

the set of independent coordinates, which together with their
time derivatives describe the mechanical system state [15].
The choice of the number of degrees of freedomof the studied
system depends on a real system behavior. Since in majority
of the real world mechanical systems the constraints are not
absolutely stiff, the real number of degrees of freedom equals
a triple number of the atoms associated with the system
material volume. In the case of the continuous system we
deal with the infinite number of degrees of freedom. In many
cases in the engineering practice, approximations are used
which enable a drastic decrease of the degrees of freedom,
not exceeding six. It is clear that this drastic approximation
may lead either directly to erroneous results, that is decrease
of modes number.

Dynamical systems may exhibit four different types of
stationary regimes: equilibrium, periodic, quasiperiodic, and
chaotic dynamics.Thementioned regimes are associatedwith
attractors in the formof a stable equilibriumpoint, limit cycle,
and quasiperiodic attractor (multiple dimensional torus) as
well as strange chaotic attractor, respectively. Recall that the
quasiperiodic and chaotic attractorsmay appear in dynamical
systems with the space phase dimension being larger than
three.

In order to reduce a continuous system to the systemwith
lumped parameters regarding spatial variables 𝑥

1
and 𝑥

2
, the

FDM (finite difference method) with approximation of 𝑂(ℎ
2
)

is applied, allowing us to consider flexible rectangular plates
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Table 1: Plate bifurcations.

Points 1st bifurcation 2nd bifurcation 3rd bifurcation 4th bifurcation
Difference between
theoretical and

computed value in %

12 𝑆
0,𝑛

13.675 13.735 13.7465 13.74894

𝑑
𝑛

5.217391 4.713115 0.22006

14 𝑆
0,𝑛

13.44 13.49 13.500078125 13.502232

𝑑
𝑛

4.96124. . . 4.67906679. . . ⋅ ⋅ ⋅ 0.21847

16 𝑆
0,𝑛

13.27 13.323 13.334 13.33635

𝑑
𝑛

4.818182 4.673519 0.21821

as the mechanical systems with infinite degrees of freedom.
The application of FDM to the continuous system yields the
following set of the difference-operator equations:
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Equations (7) are supplemented with boundary condi-
tions (4), which have the following difference representation
(flexible nonstretched (uncompressed) ribs support):
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and the following initial conditions:
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After reduction to the normal form, (7)–(9) are solved
via the fourth-order Runge-Kutta method, where on each
time step we need to solve a large system of linear algebraic
equations regarding time, and a time step is yielded by the
Runge principle.

3. Numerical Results

One of the fundamental problems of nonlinear dynamics
concerns the existence of a threshold between chaotic and
multimode turbulent dynamics. In this work we address this
problem using a 2D continuous system as the plate, where
first we illustrate numerically the scenarios of transitions
from periodic to chaotic plate dynamics via period dou-
bling bifurcations. The computed Feigenbaum constant is
compared with the known value 𝑑 = 4.66916224 . . . (see
[16]) for different choice of the partition of spatial variables
while applying FDM. Values of the series 𝑞

0,𝑛
and 𝑑

𝑛
versus

partition numbers (points) used in FDM are given in Table 1.
Observe that an increase of the partition numbers implies
an increase of DoF (degrees of freedom) of the studied
system.The numerical analysis shows that the approximation
to 64 DoF (number of partitions 8) is not sufficient to
achieve reliable results regarding the dynamics of studied
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continuous mechanical systems in the form of rectangular
plates. An increase of DoF of the considered mathematical
model implies the earlier illustrated occurrence of the first
and successive period doubling bifurcations for the fixed
amplitude of the periodic load action. The same holds for
the case of chaotic dynamics. However, the obtained results
are not in good agreement with the theoretically obtained
Feigenbaum constant value. Applying partition number 12
we have good coincidence of the theoretical and computed
Feigenbaum constant (the difference is 0.22006%), and the
obtained result can be even improved through the increase of
the partition number. We have used further 14 points in all
computations while applying FDM.

As we have mentioned, we study regular and chaotic
dynamics of a rectangular plate simply supported subjected
to the periodic load action 𝑝

𝑥
1

= 𝑝
𝑥
2

= 𝑝
0
sin𝜔
𝑝

𝑡 = 𝑝 on
the plate perimeter, where 𝜔

𝑝
and 𝑝

0
are the frequency and

amplitude of the external load, respectively.
Vibrations are studied in the time interval 𝑡 ∈ [0, 286],

for 𝜆 = 𝑎/𝑏 = 1, dissipation factor 𝜀 = 1, and the Poisson
coefficient 𝜇 = 0.3. Results obtained for the center of the
middle plate surface are generalized into the whole plate [13].
In the numerical experiment with the excitation frequency
𝜔
𝑝

= 2.9 a new modified Feigenbaum scenario has been
obtained (see Table 2).

First of all it should be emphasized that already for
small values of the amplitude of the excitation load with the
frequency 𝜔

𝑝
= 2.9, the plate vibrates at the frequency 𝜔

1
=

1.45; that is, the first subharmonic vibration regime appears.
An increase of the amplitude of the longitudinal load forces
the plate to vibrate harmonically, but a further increase of this
parameter provokes the occurrence of frequencies associated
with the second bifurcation (𝜔

3
= 0.725 and 𝜔

2
= 2.175), and

the obtained frequencies have the power that is essentially
higher than that corresponding to the frequency 𝜔

𝑝
= 2.9.

When the excitation amplitude achieves 0.749, new frequency
𝜔
1

= 1.45 = 𝜔
𝑝

/2 appears. The power of frequencies 𝜔
1
and

𝜔
𝑝
are commensurable but essentially lesser than the powers

corresponding to frequencies 𝜔
3
and 𝜔

2
. Therefore, after the

third bifurcation, the plate exhibits chaotic dynamics in the
whole time interval. The curves of equal deflection lose their
symmetry only in the chaotic plate vibration regime.

Since we study the squared plate (𝜆 = 1) and since the
same load is applied to all plate edges, the equal deflection
curves are called symmetric only if they have four axes of
symmetry.

A numerical experiment, where the excitation frequency
coincides with plate natural frequency (𝜔

𝑝
= 𝜔
0

= 5.8),
allowed us to monitor the Feigenbaum scenario to chaos
different from the so far illustrated scenarios (Table 3). Here
for small load amplitude we have harmonic vibrations, but
its increase implies the occurrence of the next bifurcation
and also an essential modification of vibration properties,
which is well characterized by the 2D wavelet spectrum for
𝑃 = 0.8. In the initial part of the studied time interval the
excitation frequency dominates, whereas for 𝑡 ≈ 50 a key role
plays 𝜔

1
= 2.9 = 𝜔

𝑝
/2. Since in this case the change of the

system vibrations is realized via a narrow chaotic window,
then a direct application of the classical Fourier analysis to
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Figure 2: Chart of the character of plate vibrations.

this case is not suitable. Namely, it does not allow us to
monitor peculiarities of time evolutions of the frequency
characteristics of the studied vibrations.

It should be emphasized that in each of the considered
time intervals we compare the obtained results with the
wavelet spectrum, and the results obtained through different
methods, that is, the Fourier and wavelet analyses, coincide
with each other. The second bifurcation takes place for 𝑝 =

1.1 and it appears for 𝑡 ≥ 126. A further increase of
the excitation amplitude implies the occurrence of intermit-
tency windows, which finally pulls the system into chaotic
dynamics exhibited in the whole time interval. The so far
described process is well illustrated via the 2D frequency
wavelet spectra. Symmetry breaking of the curves of equal
deflections appears only in chaotic zones.

The scenario detected via a third experiment (𝜔
𝑝

= 8.7)
begins, as in the previous case, with superiority of the first
bifurcation (Table 4). Then the spectrum is periodic and an
increase of the excitation frequency implies the occurrence
of the first and second bifurcations. It should be emphasized
that after the second bifurcation the intermittency windows
occur on the wavelet spectrum, which then play a key role
in the road to chaos. Another important observation is that
symmetry breaking of the curves having equal deflections
(isoclines) occurs already for the quasiperiodic vibrations,
and the vibrations associated with the second bifurcation
(𝑝 = 2.1) exhibit only two axes of symmetry. Chaotic plate
vibrations violate in full the previous symmetry of isoclines.

We follow here a recipe given by H. Poincaré, who
suggested to study instead of only one solution, a set of
solutions for the chosen control parameters. Here we take the
amplitude and frequency of the excitation acting on the plate
perimeter as two control parameters. In order to construct
a vibration type chart with the resolution 300 × 300, we
solved and analyzed 90 000 numerical problems (Figure 2).
Each of the tasks required a construction and study of time
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Table 2: Applied dynamic characteristics (𝜔
𝑝

= 2.9).
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series (signals), phase and modal portraits, Poincaré maps,
Fourier and wavelet spectra, autocorrelation functions, and
the Lyapunov exponents. Owing to the results reported in
the chart, for small load amplitudes, a zone of damped
oscillations is observed. For small frequency values 𝜔 ≤ 2,
narrow subharmonic zones are interlaced with narrow zones

of periodic vibrations. An increase of the excitation frequency
implies an increase of the area of these zones and theirmixing
with chaotic zones. The occurrence of a large amount of
subharmonic vibrations corresponds to the physical aspect of
the studied process which can be treated as the reliability and
validity confirmation of the obtained numerical results.
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Table 3: Applied dynamic characteristics (𝜔
𝑝

= 𝜔
0

= 5.8).
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Table 4: Applied dynamic characteristics (𝜔
𝑝

= 8.7).
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4. Concluding Remarks

In this work a simultaneous application of the Fourier and
wavelet analyses allowed us to construct three different
modifications of the classical Feigenbaum scenarios. It has
been reported and illustrated that the plate vibration type

undergoes qualitative changes not only in a standard way
through the changes of the values of system parameters but
also for the all fixed parameters; that is, vibrations change
qualitatively when time is increased. This problem refers to
estimation of the computational time unless an attractor is
finally achieved. We have shown in Table 3 (𝑝 = 1.1) that for
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simulation interval of the nondimensional time [0, 125] the
Fourier spectrum exhibits only two frequencies 𝜔

𝑝
and 𝜔

1
.

However, within time interval (126,286) our investigated
systemundergoes a second bifurcation associatedwith occur-
rence of two additional frequencies, 𝜔

2
and 𝜔

3
.

It has also been shown that chaos appears already after
the second Hopf bifurcation. It has been illustrated that in all
studied cases the symmetry breaking of the curves of equal
deflections (isoclines) occurs while transiting into a chaotic
regime.

The constructed vibration chart allows us to control
the dynamics of a studied continuous mechanical system.
Namely, one may choose parameters of the system keeping
its dynamics in a safe periodic regime. When the system
dynamics is shifted into a chaotic zone, this causes loss of its
stability and catastrophe.
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of circular cylindrical shells: Galerkin versus reduced-order
models via the proper orthogonal decomposition method,”

Journal of Sound and Vibration, vol. 290, no. 3–5, pp. 736–762,
2006.

[9] J. Awrejcewicz, V. A. Krysko, and A. V. Krysko, “Spatio-tem-
poral chaos and solitons exhibited by vonKármánmodel,” Inter-
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