Artykuły (WM)
Stały URI dla kolekcjihttp://hdl.handle.net/11652/206
Przeglądaj
13 wyniki
collection.search.results.head
Pozycja Wpływ modułu sprężystości postaciowej na stateczność płyt trójwarstwowych(Katedra Wytrzymałości Materiałów i Konstrukcji, Politechnika Łódzka, 2003) Mania, R.W pracy podano wyniki analizy stateczności globalnej płyt trójwarstwowych w kształcie trapezu równoramiennego swobodnie podpartych na całym obwodzie, poddanych osiowemu ściskaniu. Omówiono szczególny wpływ materiału rdzenia - jego modułu odkształcenia postaciowego - na wybór modelu płyty dla rozwiązania zagadnienia stateczności oraz na poziom obciążenia krytycznego płyty. Zamieszczono i omówiono wyniki rozwiązania analitycznego i rozwiązania numerycznego metodą elementów skończonych.Pozycja Numeryczna analiza zniszczenia absorbera energii zbudowanego z rur cienkościennych poddanych zgniotowi(Katedra Wytrzymałości Materiałów i Konstrukcji, Politechnika Łódzka, 2003) Kotełko, M.; Lipa, S.W pracy przedstawiono zagadnienie nośności w fazie zniszczenia absorbera energii zbudowanego z rur cienkościennych poddanych bocznemu (promieniowemu) zgniotowi. Omówiono metody analizy fazy zniszczenia absorberów energii. Przedstawiono model obliczeniowy metody elementów skończonych (MES) oraz wyniki obliczeń numerycznych MES. Przeprowadzono analizę wpływu liczby elementów rurowych i ich wymiarów oraz sformułowano wstępne wnioski dotyczące tego wpływu na nośność w fazie zniszczenia i ilość energii dysypowanej przez absorber. Wyniki obliczeń MES przedstawiono w postaci wykresów obciążenia w funkcji odkształcenia absorbera oraz map odkształceń i naprężeń.Pozycja Buckling of TWCFS open-section members under eccentric compression(Wydział Mechaniczny. Katedra Wytrzymałości Materiałów i Konstrukcji Politechniki Łódzkiej, 2018) Kotełko, M.; Karmazyn, A.; Borkowski, Ł.; Ungureanu, V.; Dubina, D.Pozycja Propagation of the Lamellar Cracks.(Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2014) Jaroniek, Mieczysław; Niezgodziński, TadeuszThe aim of the study is to include studying the effects of the interaction of lamellar cracks and their effect on the degradation of the structure. Lamellar cracking phenomenon is most common in the construction of welded ship hulls, bridges, pressure vessels and piping. The structures of these, as a result of errors in production and welding cracks. The sudden breakage occurs in the construction of real time, although they have been designed properly in terms of both the volume of the stress and strain. The growth of these cracks, at a rate equal to the speed of sound in the material, it is a sudden breakage.Pozycja Study of the Formation of Lamellar Cracks.(Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2014) Jaroniek, Mieczysław; Niezgodziński, TadeuszIn rolled sheets, non-metallic inclusions are distributed along the thickness of the sheet as narrow lines running parallel to the rolling direction. Such inclusions are the nuclei of lamellar cracks. This work presents the application of the numerical method for study of lamellar cracking. Numerical models of samples with long artificial fissures set in the area of the sheet axis were studied along with other encountered inclusion distributions. Changes in the stress state in the area of the inclusion were observed as the load increased. Stress concentration leads to the formation of lamellar cracks - the joining of voids in the direction parallel to the exterior surface of the sheet (so-called "terraces" are formed) and at angles (so-called "jogs" are formed). The results of experimental tests were compared with the results of numerical calculations using the finite element method.Pozycja Modeling Lamellar Cracks.(Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2013) Jaroniek, Mieczysław; Niezgodziński, TadeuszIn this work, studies of models simulating lamellar cracks were conducted. These cracks are formed in rolled sheets with non-metallic inclusions. Studies of lamellar cracks began in the 1960s, but there is still no satisfactory theory explaining their formation. In this work, the application of modeling of samples with non-metallic inclusions for the study of lamellar cracking has been presented. Studies were conducted using two research methods: the photoelastic method and the finite element method. The possibility of crack formation was analyzed in models generated from images obtained from metallographic specimens.Pozycja Application of Photoelasticy for Study of Lamellar Cracks.(Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2013) Jaroniek, Mieczysław; Niezgodziński, TadeuszIn rolled sheets, non–metallic inclusions are distributed along the thickness of the sheet as narrow lines running parallel to the rolling direction. Such inclusions are the nuclei of lamellar cracks. This work presents the application of the photoelastic method for study of lamellar cracking. Photoelastic models of samples with long artificial fissures set in the area of the sheet axis were studied along with other encountered inclusion distributions. The studied samples were placed in a polariscope and subjected to uniform tension; isochromatic images were obtained. Changes in the stress state in the area of the inclusion were observed as the load increased. Stress concentration leads to the formation of lamellar cracks – the joining of voids in the direction parallel to the exterior surface of the sheet (so–called ”terraces” are formed) and at angles (so–called ”jogs” are formed). The results of photoelastic tests were compared with the results of numerical calculations using the finite element method.Pozycja Mathematical and Experimental Analysis Tension of Steel in Bi-Polar Coordinates.(Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2016) Jaroniek, MieczysławA series of experiments was carried out to examine the effects of elastic–plastic deformation on the state of stress and the flow stress mechanism under static tension. The strain distribution determined from the fringe pattern using the Moire method allows one to determine the strain and the crack propagation of not–notched specimens an isotropic and elastic–plastic materials. In the analysis of stress the method of calculating using the bipolar coordinate is proposed. The theoretical model is divided into two elements and the condition of incompressibility is satisfied in each element. The proposed method is compared with the elastic-plastic FEM (ANSYS 12, 14) and it is satisfied approximately. The tensile test is aimed to verify the mathematical model that can be applied in the logarithmic stain in further computations.Pozycja Numerical Model of CAI Test for Fibre-Reinforced Polymer Plate.(Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2016) Baszczyński, Piotr; Dziomdziora, Sebastian; Naze, Rafał; Kubiak, TomaszThis article presents numerical simulations of laminates subjected to Compression After Impact (CAI) testing including delamination modelling. Different model of impact damages of laminate were considered. Progressive damage analysis have been employed and different failure criteria have been applied. For each simulation failure load has been estimated as same as the position of damages at destroyed layer. Finally, obtained numerical results were compared with experimental data from referential paper.Pozycja Local Buckling of Thin-Walled Column of Square Cross-Section Made of In-Plane Coupled Laminate.(Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2016) Kołakowski, Zbigniew; Teter, Andrzej; Pasierbiewicz, DamianThe non–symmetric, general laminate exhibits different types of coupling between the extension, shearing, bending and twisting. For practical reasons, the in–plane coupled laminate is a particularly interesting. In this case, the coupling between shearing andextension takes place. Details calculations were performed for a short columns of square cross-section made of in–plane coupled and fully uncoupled laminate under uniform compression. Finite element method (FEM) and analytical–numerical method (ANM) were performed. In FEM analyses, the eigenbuckling problem has been solved using the Lanczos method, whereas the nonlinear buckling analysis were performed using the Newton– Raphson method and the Ritz method. In ANM analyses, the Koiter’s asymptotic theory is applied. The relationship between forces/moments and deformations/curvature were described using classical lamination theory (CLT). The coupling between in–plane shearing and extension has a significant influence on the behavior of thin–walled structures under compression.