Prediction of Natural Image Saliency for Synthetic Images
dc.contributor.author | Rudak, Ewa | |
dc.contributor.author | Rynkiewicz, Filip | |
dc.contributor.author | Daszuta, Marcin | |
dc.contributor.author | Sturgulewski, Łukasz | |
dc.contributor.author | Lazarek, Jagoda | |
dc.date.accessioned | 2021-10-26T10:35:32Z | |
dc.date.available | 2021-10-26T10:35:32Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Numerous saliency models are being developed with the use ofneural networks and are capable of combining various features and predicting the saliency values with great results. In fact, it might be difficult to replace the possibilities of artificial intelligence applied to algorithms responsible for predicting saliency. However, the low-level features are still important and should not be removed completely from new saliency models. This work shows that carefully chosen and integrated features, including a deep learning based one, can be used for saliency prediction. The integration is obtained by using Multiple Kernel Learning. This solution is quite effective, as compared to a few other models tested on the same dataset. | en_EN |
dc.identifier.citation | Rudak E., Rynkiewicz F., Daszuta M., Sturgulewski Ł., Lazarek J., Prediction of Natural Image Saliency for Synthetic Images. W: TEWI 2021 (Technology, Education, Knowledge, Innovation), Wojciechowski A. (Ed.), Napieralski P. (Ed.), Lipiński P. (Ed.)., Seria: Monografie PŁ;Nr 2378, Wydawnictwo Politechniki Łódzkiej, Łódź 2021, s. 155-169, ISBN 978-83-66741-10-2, DOI 10.34658/9788366741102.11. | |
dc.identifier.doi | 10.34658/9788366741102.11 | |
dc.identifier.isbn | 978-83-66741-10-2 | |
dc.identifier.uri | http://hdl.handle.net/11652/4031 | |
dc.identifier.uri | https://doi.org/10.34658/9788366741102.11 | |
dc.language.iso | en | en_EN |
dc.page.number | s. 155-169 | |
dc.publisher | Wydawnictwo Politechniki Łódzkiej | pl_PL |
dc.publisher | Lodz University of Technology Press | en_EN |
dc.relation.ispartof | Wojciechowski A. (Ed.), Napieralski P. (Ed.), Lipiński P. (Ed.)., TEWI 2021 (Technology, Education, Knowledge, Innovation), Seria: Monografie PŁ;Nr 2378, Wydawnictwo Politechniki Łódzkiej, Łódź 2021, ISBN 978-83-66741-10-2, DOI 10.34658/9788366741102. | |
dc.relation.ispartofseries | Monografie Politechniki Łódzkiej; 2378 | pl_PL |
dc.relation.ispartofseries | Lodz University of Technology Monographs; 2378 | en_EN |
dc.rights | Fair use condition | en_EN |
dc.rights | Dla wszystkich w zakresie dozwolonego użytku | pl_PL |
dc.rights.license | LUT License | en_EN |
dc.rights.license | Licencja PŁ | pl_PL |
dc.subject | computer games | en_EN |
dc.subject | artificial intelligence | en_EN |
dc.subject | image saliency | en_EN |
dc.subject | Human Visual Attention | en_EN |
dc.subject | gry komputerowe | pl_PL |
dc.subject | sztuczna inteligencja | pl_PL |
dc.subject | istotność obrazu | pl_PL |
dc.subject | uwaga wzrokowa człowieka | pl_PL |
dc.title | Prediction of Natural Image Saliency for Synthetic Images | en_EN |
dc.type | Rozdział książki | pl_PL |
dc.type | Book chapter | en_EN |