Mixing Synthetic and Real-world Datasets Strategy for Improved Generalization of the CNN
dc.contributor.author | Młodzikowski, Kamil | |
dc.contributor.author | Belter, Dominik | |
dc.date.accessioned | 2023-09-25T09:32:51Z | |
dc.date.available | 2023-09-25T09:32:51Z | |
dc.date.issued | 2023 | |
dc.description.abstract | In this paper, we deal with the problem of supervised training neural networks with an insufficient number of real-world training examples. We propose a method that at the beginning trains the neural network using a relatively simple synthetic dataset. In the following epochs, we add more challenging and real-life images to the training dataset. We compare the proposed strategy with other methods of using artificial and real-world datasets for training the neural network. The obtained results show that the proposed strategy allows for obtaining the neural network with higher generalization capabilities than competitive methods. | en_EN |
dc.identifier.citation | Młodzikowski K., Belter D., Mixing Synthetic and Real-world Datasets Strategy for Improved Generalization of the CNN. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 435-441, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.68. | |
dc.identifier.doi | 10.34658/9788366741928.68 | |
dc.identifier.isbn | 978-83-66741-92-8 | |
dc.identifier.uri | http://hdl.handle.net/11652/4844 | |
dc.identifier.uri | https://doi.org/10.34658/9788366741928.68 | |
dc.language.iso | en | en_EN |
dc.page.number | s. 435-441 | |
dc.publisher | Wydawnictwo Politechniki Łódzkiej | pl_PL |
dc.publisher | Lodz University of Technology Press | en_EN |
dc.relation.ispartof | Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Progress in Polish Artificial Intelligence Research 4, Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928. | |
dc.rights | Dla wszystkich w zakresie dozwolonego użytku | pl_PL |
dc.rights | Fair use condition | en_EN |
dc.rights.license | Licencja PŁ | pl_PL |
dc.rights.license | LUT License | en_EN |
dc.subject | deep learning | en_EN |
dc.subject | robot perception | en_EN |
dc.subject | articulated objects | en_EN |
dc.subject | głębokie uczenie się | pl_PL |
dc.subject | percepcja robotów | pl_PL |
dc.subject | obiekty przegubowe | pl_PL |
dc.title | Mixing Synthetic and Real-world Datasets Strategy for Improved Generalization of the CNN | en_EN |
dc.type | Rozdział - monografia | pl_PL |
dc.type | Chapter - monograph | en_EN |
Pliki
Oryginalne pliki
1 - 1 z 1
Brak miniatury
- Nazwa:
- 68. Mixing_syntetic_real-world_Mlodzikowski_Belter_2023.pdf
- Rozmiar:
- 3 MB
- Format:
- Adobe Portable Document Format
- Opis:
Licencja
1 - 1 z 1
Brak miniatury
- Nazwa:
- license.txt
- Rozmiar:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Opis: