
Mixing Synthetic and Real-world
Datasets Strategy for Improved

Generalization of the CNN

Kamil Młodzikowski, Dominik Belter
Institute of Robotics and Machine Intelligence,

Poznan University of Technology,
60-965 Poznań, Poland

Abstract. In this paper, we deal with the problem of supervised training
neural networks with an insufficient number of real-world training exam-
ples. We propose a method that at the beginning trains the neural network
using a relatively simple synthetic dataset. In the following epochs, we add
more challenging and real-life images to the training dataset. We compare
the proposed strategy with other methods of using artificial and real-world
datasets for training the neural network. The obtained results show that
the proposed strategy allows for obtaining the neural network with higher
generalization capabilities than competitive methods.
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1. Introduction

When trying to learn new skills, people tend to start with easy, straightforward
examples, increasing the difficulty in time. Such a strategy can also be helpful
while working with deep neural networks. While training a model, a rich, robust,
and balanced dataset is of great importance. In a typical scenario, we have a large
synthetic dataset that can be used to train the neural network. However, the ob-
tained neural network does not generalize well on the data from the real robot. On
the other hand, we can have access to the dataset with a small number of real-life
examples. Training on the limited dataset results in an overfitted neural network.
The most popular strategy is to train the neural network on the dataset containing
synthetic and real data at the same time. In this paper, we check if this strategy is
a good choice.

In this research, we focus on the problem of mixing artificial with real-world
data to achieve the best training outcome using the two sets. We propose three
data mixing strategies, compare their influence on the training process and test
the results on validation data to check which one provides the most generalized
outcome.

DOI:10.34658/9788366741928.68

https://doi.org/10.34658/9788366741928.68


1.1. Related Work

Our problem can be also treated as multi-task learning. One problem is to work
on artificial data and one is to work on real-world data. Multi-task architectures
in the field of computer vision have conventionally been constructed with a shared
global feature extractor, consisting of convolutional layers, followed by distinct
output branches for each task. The subsequent tasks use the output of the previous
task as input, allowing for interdependent learning [1].

Another approach is to adjust and refine the simulated data to look more re-
alistic. It can be achieved using GAN models [2]. The human brain is capable
of continual learning through synaptic consolidation, which reduces the flexibility
of synapses that are critical to previously learned tasks. In order to replicate this
in artificial neural networks, the authors of [3] have developed an algorithm that
constrains vital parameters to remain in proximity to their previous values.

Most existing methods that implement rehearsing for continual learning, pri-
marily in the context of image classification, rely on reusing a subset of previ-
ously seen data during the training process. iCaRL [4] utilizes sets of representa-
tive images. When presented with new data for previously unseen classes, iCaRL
modifies its feature extraction process and updates the exemplar set accordingly.
OCS [5] leverages three selection strategies to obtain a core set that promotes gen-
eralization by discarding outliers and minimizing interference with previous tasks.
On the other hand, the authors of [6], propose a new approach based on random
undersampling, which allows them to preserve the entirety of past training data for
retraining the model on future problems.

In [7], the network is trained on synthetic data by simulating the robot’s cam-
era view. Subsequently, the network is augmented with randomly initialized pa-
rameters and further trained on real-world robot manipulation tasks. A different
approach is proposed in [8], where the main idea is to create a diverse dataset of
artificial learning scenarios by randomly varying the environment, allowing for
transfer learning to reality with minimal real images required for adjustment.

2. Modulated dataset mixing

We propose a deep learning method that utilizes linear, incremental mixing of
real-world and synthetic data. We verify the proposed strategy on the problem of
axis rotation segmentation on the RGB-D images. The problem of segmenting an
axis of rotation on an image is challenging, partially because of insufficient real-
world data. Collecting more of real-world data is time-consuming and requires
precise measuring.
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Figure 1: Example RGB-D pairs from the RBO (top) and synthetic (bottom)
datasets. From left to right: RGB image of the first position, its depth image, RGB
image of the second position, its depth image, and the axis of rotation. Source:
own work.

2.1. Datasets

2.1.1. Real-world data (RBO Dataset)

To train the neural network, we use the real-life RBO Dataset [9]. It contains
objects with rotational joints, precisely measured using motion capture systems.
However, the data is redundant, as in our case usable sequences are only recorded
from one perspective. Also, not many objects are available. We selected 20000
RGB-D pairs of images from the dataset to use in our tests. An example is pre-
sented in Fig. 1. The CNN trained only on this dataset is working well on similar
objects, but does not generalize well [10]. Increasing the number of real-world
examples would improve the generalization capabilities of the neural network, but
it requires access to many unique objects and a lot of time for precise measuring.

2.1.2. Generated dataset

The synthetic dataset contains pairs of RGB-D images of rectangular planes
rotating around one of the edges. We generated 20000 pairs to use in our tests.
Example RGB-D images are presented in Fig. 1.

2.2. Deep neural network architecture

Our method was developed and tested using architecture presented in [10].
We use 3D U-Net [11] with a pair of RGB-D images, captured before robotic
interaction with an articulated object and after rotating the object, as an input. The
output from the CNN is a single image with a segmented axis of rotation.

2.3. Scenarios

We propose 4 dataset-mixing methods:
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synth.→real – the CNN is trained on the synthetic images at the beginning and
these images are gradually replaced by real ones.

synth.→real and synth. – the CNN is trained on the synthetic images at the be-
ginning and we gradually add real images to the training set

real and synth.→real – the CNN is trained on the mixture of synthetic and real
images at the beginning and we gradually remove synthetic images from the
training set

real and synth. – the CNN is trained on the mixture of synthetic and real images

We also train the network on only real and only synthetic data for comparison.

3. Tests and results

To compare the dataset mixing methods, we performed training the network 3
times for 150 epochs per scenario. Training CNN takes an average of 35 hours, and
the whole testing takes about 630 hours. The network was evaluated separately on
a synthetic validation set and on the real-world validation set. The average of these
two validations was also calculated. To measure the performance of a network, the
Dice Loss [12] was used.

After 150 epochs of training (Fig 2), the synth.→real and synth. and synth.→
real scenarios achieved the best results on real and average validation loss, both
reaching the average Dice Loss of 0.337. However the standard deviation of
synth.→real and synth. is smaller since it achieved more consistent results. All
the results are presented in Table 1.
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(a) Validation performed on
the real-world dataset.
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(b) Validation performed on
the synthetic dataset.
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(c) Average value of both val-
idation losses.

Figure 2: Training progress validated on real-world (a), synthetic (b) datasets, and
the and the mixture of real and synthetic images. Source: own work.

We also performed tests on previously unseen sequences from the RBO Dataset.
To quantitatively evaluate the results of the segmentation we compute the error an-
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gle eproj
axis described in [10]. The results are presented in Table 2. The synth.→real

and synth. and synth.→real scenarios also achieved the best results in these tests.

Table 1: Error metric (Dice Loss) for the segmentation images on real validation
set ereal, synthetic validation set esynth. and average of these two eavg. at 150th epoch
for all the training scenarios.

real synth real & synth. real & synth.→real synth→real synth→real & synth.
ereal 0.169 0.996 0.178 0.153 0.119 0.157
σreal 0.001 0.002 0.036 0.014 0.013 0.047
esynth. 0.998 0.226 0.657 0.832 0.556 0.518
σsynth. 0.002 0.034 0.086 0.001 0.106 0.106
eavg. 0.584 0.611 0.417 0.493 0.337 0.337
σavg. 0.001 0.016 0.025 0.007 0.059 0.029

Table 2: Error angle eproj
axis between the projection of the ground truth axis on the

image plane and the direction given by the segmentation results [10] for the seg-
mentation images on real-world test dataset at 150th epoch for all the training
scenarios.

real synth real & synth. real & synth.→real synth→real synth→real & synth.

eproj
axis 0.527 1.241 0.563 0.703 0.405 0.424

4. Conclusion

In this paper, we propose dataset mixing methods that have a significant impact
on the final model performance. The modulated mixing method helps with train-
ing a neural network with limited access to real-world data. We propose to start
training with the synthetic dataset. With this strategy, the neural network learns
quickly to solve the simplified problem. Then, we gradually introduce real and
more challenging data. As a result, we obtain the best result on synthetic and real
images when compared to other training strategies.

In the future, we are going to test the proposed strategy on the other popular
problems in robotics that suffer from the limited number of real-world training
examples.
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tinual learning on 3d point clouds with random compressed rehearsal, Com-
puter Vision and Image Understanding, 2023, vol. 228, p. 103621, ISSN
1077-3142, doi: https://doi.org/10.1016/j.cviu.2023.103621.

[7] Rusu A.A., Vecerik M., Rothörl T., Heess N., Pascanu R., Hadsell R., Sim-
to-real robot learning from pixels with progressive nets, 2016, doi: 10.48550/
ARXIV.1610.04286.
https://arxiv.org/abs/1610.04286

440 Progress in Polish Artificial Intelligence Research 4



2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3482–3489, doi: 10.1109/IROS.2018.8593933.

[9] Martín-Martín R., Eppner C., Brock O., The RBO dataset of articulated ob-
jects and interactions, The International Journal of Robotics Research, 2019,
vol. 38, no 9, pp. 1013–1019.

[10] Młodzikowski K., Belter D., CNN-based joint state estimation during robotic
interaction with articulated objects, [In:] 2022 17th International Confer-
ence on Control, Automation, Robotics and Vision (ICARCV), pp. 78–83,
doi: 10.1109/ICARCV57592.2022.10004277.

[11] Cicek O., Abdulkadir A., Lienkamp S.S., Brox T., Ronneberger O., 3D U-
Net: Learning dense volumetric segmentation from sparse annotation, 2016,
doi: 10.48550/ARXIV.1606.06650.

[12] Sudre C.H., Li W., Vercauteren T., Ourselin S., Cardoso M.J., Generalised
dice overlap as a deep learning loss function for highly unbalanced seg-
mentations, [In:] Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support, Springer International Publishing,
2017, pp. 240–248, doi: 10.1007/978-3-319-67558-9_28.

K. Młodzikowski, D. Belter: Mixing Synthetic and Real-world Datasets. . . 441

[8] Tobin J., Biewald L., Duan R., Andrychowicz M., Handa A., Kumar V.,
McGrew B., Ray A., Schneider J., Welinder P., Zaremba W., Abbeel P.,
Domain randomization and generative models for robotic grasping, [In:]




