A review of lcam datasets and sève whiteness proposal

dc.contributor.authorMukthy, Azmary Akter
dc.contributor.authorVik, Michal
dc.contributor.authorViková, Martina
dc.date.accessioned2022-11-25T06:58:47Z
dc.date.available2022-11-25T06:58:47Z
dc.date.issued2022
dc.description.abstractIn our recent work, we investigated the validity of the newly proposed whiteness formula by Robert Sève [1] for our LCAM whiteness datasets under a LED light source of correlated color temperature (CCT) 5000K combined with Wood's UV-A lamp.We compared the CIE whiteness formula, the Ganz whiteness formula, and the Séve proposal to the results of visual assessment of forty white samples assessed by ten observers with normal color vision under experimental light source. Because the Sève proposal was derived from the CIE formula for whiteness considering whitespace, we were interested to see its impact on our datasets under test lighting different from D65.We have found that the Sève whiteness formula can predict maximum whiteness as a function of saturation for light conditions other than CIE D65, but visual observations of whiteness lead to an assessment of a significant drop in whiteness for materials with saturation between - 40 and -70 and luminance factor between 70 and 90. As expected, both the CIE whiteness formula and the Ganz formula correlated strongly with visual observations. In the case of the CIE equation, a high correlation coefficient of 0.84 was measured compared to the newly proposed W2,n equation where a value of 0.71 was found. In other words, with a very intense UV source, the intensity of which is above the UV fraction of the corresponding CIE illuminations D, the colouration of the samples containing FWA is highly saturated. This fact is not taken into account in the case of the CIE equation. Dr. Sève's new proposal addresses this problem, but sufficient new visual experiments need to be set up so that the parameters of this equation can be optimised.en_EN
dc.identifier.citationMukthy A.A., Vik M., Viková M., A review of lcam datasets and sève whiteness proposal. W: AUTEX 2022 : 21st World Textile Conference AUTEX 2022 - AUTEX Conference Proceedings, Lodz University of Technology Press, Lodz 2022, s. 353-357, ISBN 978-83-66741-75-1, doi: 10.34658/9788366741751.73.
dc.identifier.doi10.34658/9788366741751.73
dc.identifier.isbn978-83-66741-75-1
dc.identifier.urihttp://hdl.handle.net/11652/4507
dc.identifier.urihttps://doi.org/10.34658/9788366741751.73
dc.language.isoenen_EN
dc.page.numbers. 353-357
dc.publisherWydawnictwo Politechniki Łódzkiejpl_PL
dc.publisherLodz University of Technology Pressen_EN
dc.relation.ispartofAUTEX 2022 : 21st World Textile Conference AUTEX 2022 - AUTEX Conference Proceedings, Lodz University of Technology Press, Lodz 2022, ISBN 978-83-66741-75-1, doi: 10.34658/9788366741751.
dc.rightsDla wszystkich w zakresie dozwolonego użytkupl_PL
dc.rightsFair use conditionen_EN
dc.rights.licenseLicencja PŁpl_PL
dc.rights.licenseLUT Licenseen_EN
dc.subjectCIE whitenessen_EN
dc.subjectSève whiteness formulaen_EN
dc.subjectGanz formulaen_EN
dc.subjectCorrelated Color Temperatureen_EN
dc.subjectbiel CIEpl_PL
dc.subjectformuła bieli Sèvepl_PL
dc.subjectformuła Ganzapl_PL
dc.subjectskorelowana temperatura barwowapl_PL
dc.titleA review of lcam datasets and sève whiteness proposalen_EN
dc.typeartykuł - konferencjapl_PL
dc.typearticle - conferenceen_EN

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
73_Review_lcam_Mukthy_Autex_2022.pdf
Rozmiar:
693.92 KB
Format:
Adobe Portable Document Format
Opis:

Licencja

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
license.txt
Rozmiar:
1.71 KB
Format:
Item-specific license agreed upon to submission
Opis:

Kolekcje