Lung Xray Images Analysis for COVID-19 Diagnosis
dc.contributor.author | Kloska, Anna | |
dc.contributor.author | Tarczewska, Martyna | |
dc.contributor.author | Giełczyk, Agata | |
dc.contributor.author | Marciniak, Beata | |
dc.date.accessioned | 2023-09-25T11:01:45Z | |
dc.date.available | 2023-09-25T11:01:45Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Background: The SARS-CoV-2 pandemic began in early 2020. It paralyzed human life all over the world and threatened our security. Thus, proposing some novel and effective approaches to diagnosing COVID-19 infections became paramount. Methods: This article proposes a method for the classification of chest X-ray images based on the transfer learning. We examined also different scenarios of dataset augmentation. Results: The paper reports accuracy=98%, precision=97%, recall=100% and F1-score=98% in the most promising approach. Conclusion: Our research proofs that machine learning can be used in order to support medics in chest X-ray classification and implementing augmentation can lead to improvements in accuracy, precision, recall, and F1-scores. | en_EN |
dc.identifier.citation | Kloska A., Tarczewska M., Giełczyk A., Marciniak B., Lung Xray Images Analysis for COVID-19 Diagnosis. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 485-489, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.77. | |
dc.identifier.doi | 10.34658/9788366741928.77 | |
dc.identifier.isbn | 978-83-66741-92-8 | |
dc.identifier.uri | http://hdl.handle.net/11652/4853 | |
dc.identifier.uri | https://doi.org/10.34658/9788366741928.77 | |
dc.language.iso | en | en_EN |
dc.page.number | s. 485-489 | |
dc.publisher | Wydawnictwo Politechniki Łódzkiej | pl_PL |
dc.publisher | Lodz University of Technology Press | en_EN |
dc.relation.ispartof | Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Progress in Polish Artificial Intelligence Research 4, Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928. | |
dc.rights | Dla wszystkich w zakresie dozwolonego użytku | pl_PL |
dc.rights | Fair use condition | en_EN |
dc.rights.license | Licencja PŁ | pl_PL |
dc.rights.license | LUT License | en_EN |
dc.subject | COVID-19 | en_EN |
dc.subject | image processing | en_EN |
dc.subject | augmentation | en_EN |
dc.subject | artificial intelligence | en_EN |
dc.subject | COVID-19 | pl_PL |
dc.subject | przetwarzanie obrazu | pl_PL |
dc.subject | wzmacnianie | pl_PL |
dc.subject | sztuczna inteligencja | pl_PL |
dc.title | Lung Xray Images Analysis for COVID-19 Diagnosis | en_EN |
dc.type | Rozdział - monografia | pl_PL |
dc.type | Chapter - monograph | en_EN |
Pliki
Oryginalne pliki
1 - 1 z 1
Brak miniatury
- Nazwa:
- 77. Lung_Xray_images_analysis_Kloska_Tarczewska_2032.pdf
- Rozmiar:
- 264.07 KB
- Format:
- Adobe Portable Document Format
- Opis:
Licencja
1 - 1 z 1
Brak miniatury
- Nazwa:
- license.txt
- Rozmiar:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Opis: