Lung Xray Images Analysis for COVID-19 Diagnosis
Data
2023
Autorzy
Kloska, Anna
Tarczewska, Martyna
Giełczyk, Agata
Marciniak, Beata
Tytuł czasopisma
ISSN czasopisma
Tytuł tomu
Wydawca
Wydawnictwo Politechniki Łódzkiej
Lodz University of Technology Press
Lodz University of Technology Press
Abstrakt
Background: The SARS-CoV-2 pandemic began in early 2020. It
paralyzed human life all over the world and threatened our security. Thus,
proposing some novel and effective approaches to diagnosing COVID-19
infections became paramount. Methods: This article proposes a method
for the classification of chest X-ray images based on the transfer learning.
We examined also different scenarios of dataset augmentation. Results:
The paper reports accuracy=98%, precision=97%, recall=100% and
F1-score=98% in the most promising approach. Conclusion: Our research
proofs that machine learning can be used in order to support medics in chest
X-ray classification and implementing augmentation can lead to improvements
in accuracy, precision, recall, and F1-scores.
Opis
Słowa kluczowe
COVID-19, image processing, augmentation, artificial intelligence, COVID-19, przetwarzanie obrazu, wzmacnianie, sztuczna inteligencja
Cytowanie
Kloska A., Tarczewska M., Giełczyk A., Marciniak B., Lung Xray Images Analysis for COVID-19 Diagnosis. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 485-489, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.77.