Lung Xray Images Analysis for COVID-19 Diagnosis
Data
2023
Tytuł czasopisma
ISSN czasopisma
Tytuł tomu
Wydawca
Wydawnictwo Politechniki Łódzkiej
Lodz University of Technology Press
Lodz University of Technology Press
Abstrakt
Background: The SARS-CoV-2 pandemic began in early 2020. It
paralyzed human life all over the world and threatened our security. Thus,
proposing some novel and effective approaches to diagnosing COVID-19
infections became paramount. Methods: This article proposes a method
for the classification of chest X-ray images based on the transfer learning.
We examined also different scenarios of dataset augmentation. Results:
The paper reports accuracy=98%, precision=97%, recall=100% and
F1-score=98% in the most promising approach. Conclusion: Our research
proofs that machine learning can be used in order to support medics in chest
X-ray classification and implementing augmentation can lead to improvements
in accuracy, precision, recall, and F1-scores.
Opis
Słowa kluczowe
COVID-19, image processing, augmentation, artificial intelligence, COVID-19, przetwarzanie obrazu, wzmacnianie, sztuczna inteligencja
Cytowanie
Kloska A., Tarczewska M., Giełczyk A., Marciniak B., Lung Xray Images Analysis for COVID-19 Diagnosis. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 485-489, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.77.