Lung Xray Images Analysis for COVID-19 Diagnosis

Miniatura

Data

2023

Tytuł czasopisma

ISSN czasopisma

Tytuł tomu

Wydawca

Wydawnictwo Politechniki Łódzkiej
Lodz University of Technology Press

Abstrakt

Background: The SARS-CoV-2 pandemic began in early 2020. It paralyzed human life all over the world and threatened our security. Thus, proposing some novel and effective approaches to diagnosing COVID-19 infections became paramount. Methods: This article proposes a method for the classification of chest X-ray images based on the transfer learning. We examined also different scenarios of dataset augmentation. Results: The paper reports accuracy=98%, precision=97%, recall=100% and F1-score=98% in the most promising approach. Conclusion: Our research proofs that machine learning can be used in order to support medics in chest X-ray classification and implementing augmentation can lead to improvements in accuracy, precision, recall, and F1-scores.

Opis

Słowa kluczowe

COVID-19, image processing, augmentation, artificial intelligence, COVID-19, przetwarzanie obrazu, wzmacnianie, sztuczna inteligencja

Cytowanie

Kloska A., Tarczewska M., Giełczyk A., Marciniak B., Lung Xray Images Analysis for COVID-19 Diagnosis. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 485-489, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.77.

Kolekcje

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced