The Evaluation of Text String Matching Algorithms as an Aid to Image Search

dc.contributor.authorOchelska-Mierzejewska, Joanna
dc.date.accessioned2021-07-16T07:56:49Z
dc.date.available2021-07-16T07:56:49Z
dc.date.issued2018
dc.description.abstractThe main goal of this paper is to analyse intelligent text string matching methods (like fuzzy sets and relations) and evaluate their usefulness for image search. The present study examines the ability of different algorithms to handle multi-word and multi-sentence queries. Eight different similarity measures (N-gram, Levenshtein distance, Jaro coefficient, Dice coefficient, Overlap coeffiient, Euclidean distance, Cosine similarity and Jaccard similarity) are employed to analyse the algorithms in terms of time complexity and accuracy of results. The outcomes are used to develop a hierarchy of methods, illustrating their usefulness to image search. The search response time increases significantly in the case of data sets containing several thousand images. The findings indicate that the analysed algorithms do not fulfil the response-time requirements of professional applications. Due to its limitations, the proposed system should be considered only as an illustration of a novel solution with further development perspectives. The use of Polish as the language of experiments affects the accuracy of measures. This limitation seems to be easy to overcome in the case of languages with simpler grammar rules (e.g. English).en_EN
dc.identifier.citationOchelska-Mierzejewska, J. (2018). The Evaluation of Text String Matching Algorithms as an Aid to Image Search. Journal of Applied Computer Science, 26(1), 33-62. https://doi.org/10.34658/jacs.2018.26.1.33-62
dc.identifier.doihttps://doi.org/10.34658/jacs.2018.26.1.33-62
dc.identifier.doi10.34658/jacs.2018.26.1.33-62
dc.identifier.issn1507-0360
dc.identifier.urihttp://hdl.handle.net/11652/3882
dc.identifier.urihttps://doi.org/10.34658/jacs.2018.26.1.33-62
dc.language.isoenen_EN
dc.page.numbers. 33-62
dc.publisherWydawnictwo Politechniki Łódzkiejpl_PL
dc.publisherLodz University of Technology Pressen_EN
dc.relation.ispartofJournal of Applied Computer Science, Vol. 26, No. 1, Wydawnictwo Politechniki Łódzkiej, Łódź 2018, ISSN 1507-0360.
dc.rightsFair use conditionen_EN
dc.rightsDla wszystkich w zakresie dozwolonego użytkupl_PL
dc.rights.licenseLUT Licenseen_EN
dc.rights.licenseLicencja PŁpl_PL
dc.subjecttext comparisonen_EN
dc.subjectN-gramen_EN
dc.subjectLevenshtein distanceen_EN
dc.subjectJaro coefficienten_EN
dc.subjectDice’s coefficienten_EN
dc.subjectOverlap coefficienten_EN
dc.subjectEuclidean distanceen_EN
dc.subjectCosine similarityen_EN
dc.subjectJaccard similarityen_EN
dc.subjectporównanie tekstupl_PL
dc.subjectN-grampl_PL
dc.subjectodległość Levenshteinapl_PL
dc.subjectwspółczynnik Jaropl_PL
dc.subjectwspółczynnik kościpl_PL
dc.subjectwspółczynnik nakładaniapl_PL
dc.subjectodległość euklidesowapl_PL
dc.subjectCosinus podobieństwapl_PL
dc.subjectpodobieństwo Jaccardapl_PL
dc.titleThe Evaluation of Text String Matching Algorithms as an Aid to Image Searchen_EN
dc.typeArtykułpl_PL
dc.typeArticleen_EN

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
2_Evaluat_text_Ocelska-Mierzejewska_2018.pdf
Rozmiar:
674 KB
Format:
Adobe Portable Document Format
Opis:

Licencja

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
license.txt
Rozmiar:
1.71 KB
Format:
Item-specific license agreed upon to submission
Opis: