Higher order asymptotic homogenization for dynamical problems
Data
2021
Tytuł czasopisma
ISSN czasopisma
Tytuł tomu
Wydawca
Wydawnictwo Politechniki Łódzkiej
Politechnika Łódzka. Wydział Mechaniczny. Katedra Automatyki, Biomechaniki i Mechatroniki.
Lodz University of Technology Press
Lodz University of Technology. Faculty of Mechanical Engineering. Department of Automation, Biomechanics and Mechatronics.
Politechnika Łódzka. Wydział Mechaniczny. Katedra Automatyki, Biomechaniki i Mechatroniki.
Lodz University of Technology Press
Lodz University of Technology. Faculty of Mechanical Engineering. Department of Automation, Biomechanics and Mechatronics.
Abstrakt
In general, asymptotic homogenization methods are based on the hypothesis of perfect
scale separation. In practice, this is not always the case. The problem arises of improving
the solution in such a way that it becomes applicable if inhomogeneity parameter is not small.
Our study focuses on the higher order asymptotic homogenization for dynamical problems.
Systems with continuous and piecewise continuous parameters, discrete systems, and also
continuous systems with discrete elements are considered. Both low-frequency and highfrequency
vibrations are analyzed. For low-frequency vibrations, several approximations of
the asymptotic homogenization method are constructed. The influence of the boundary conditions,
the system parameters is investigated.
Opis
Słowa kluczowe
periodically nonhomogeneous structures, dynamics, homogenization, scale separation, struktury okresowo niejednorodne, dynamika, homogenizacja, podział skali
Cytowanie
Awrejcewicz J., Andrianow I.I., Diskovsky A.A., Higher order asymptotic homogenization for dynamical problems. W: DSTA-2021 Conference Books – Abstracts (16th International Conference : Dynamical Systems Theory and Applications DSTA 2021 ABSTRACTS), Awrejcewicz J. (red.), Kaźmierczak M. (red.), Olejnik P. (red.),
Mrozowski J. (red.), Wydawnictwo Politechniki Łódzkiej ; Politechnika Łódzka. Wydział Mechaniczny. Katedra Automatyki, Biomechaniki i Mechatroniki, Łódź 2021, s. 723-724, ISBN 978-83-66741-20-1.