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Abstract: In general, asymptotic homogenization methods are based on the hypothesis of per-

fect scale separation. In practice, this is not always the case. The problem arises of improving 

the solution in such a way that it becomes applicable if inhomogeneity parameter is not small. 

Our study focuses on the higher order asymptotic homogenization for dynamical problems. 

Systems with continuous and piecewise continuous parameters, discrete systems, and also 

continuous systems with discrete elements are considered. Both low-frequency and high-

frequency vibrations are analyzed. For low-frequency vibrations, several approximations of 

the asymptotic homogenization method are constructed. The influence of the boundary condi-

tions, the system parameters is investigated 
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1. Introduction  

As noted in [1], the bulk of researches based on the  asymptotic homogenization method (AHM) use 

hypothesis of perfect scale separation. In practice, this hypothesis not always justified. Formally, this 

means that the first approximation of the AHM does not provide the required accuracy. The problem 

arises of improving the solution in such a way that it becomes applicable for a not small value of the 

used inhomogeneity parameter. This conclusion is supported by the results of a number of studies. 

Xing and Chen [2] analysed the static problems of the periodical composite rod using different order 

of AHM and FEM. Numerical results show that the second approximation is necessary for accurate 

analysis of periodical composite structures. Kesavan [3,4] considered the Dirichlet eigenvalue problem 

for a second-order elliptic operator in the divergence form. Comparison with numerical solutions showed 

the need to take into account higher approximations. Santosa and Vogelius [5] and Moskow and Voge-

lius [6] studied the eigenvalue problem associated with the vibration of a composite medium with a 

periodic microstructure. The investigation was devoted to the first-order correction to the homo-

genized eigenvalues. It is shown that for the Dirichlet problem, the interaction of the periodic 

microstructure with the boundary of the medium must be taken into account. The first order Neumann 

eigenvalue corrections are always zero in one dimension. It vaguely of phenomenon that is remi-

niscent a frequently occurs in connection with spectral approximation for self adjoint operators: the 

error in the eigenvalue order is square energy norm error in a corresponding eigenvector [5]. 

Our study focuses on the higher order asymptotic homogenization for dynamical problems. For sys-

tems with continuous and piecewise continuous parameters, discrete systems, and continuous systems 

with discrete elements, explicit expressions for the second approximations for eigenvalues are 

constructed. 
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2. Results and Discussion 

Consider for example the eigenvalue Neumann problem 
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Going over to fast 1x    and slow x  variables we seek solution of Neuman problem (1), (2) as 

follows 
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For piecewise-continuous function   , 0 , , 1in ma E c E c        (4), (5) yield [7] 
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The area of applicability of the obtained solution are determined by the relation 
1n   . 

3. Concluding Remarks  

Continuous and piecewise continuous parameters, discrete systems, and also continuous systems with 

discrete elements are considered. Both low-frequency and high-frequency vibrations are analyzed. 

The use of one- and two-point Padé approximants is proposed to improve the results accuracy. 
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