Improvement of Attention Mechanism Explainability in Prediction of Chemical Molecules’ Properties
dc.contributor.author | Durys, Bartosz | |
dc.contributor.author | Tomczyk, Arkadiusz | |
dc.date.accessioned | 2023-09-21T10:25:36Z | |
dc.date.available | 2023-09-21T10:25:36Z | |
dc.date.issued | 2023 | |
dc.description.abstract | In this paper, the analysis of selected graph neural network operators is presented. The classic Graph Convolutional Network (GCN) was compared with methods containing trainable attention coefficients: Graph Attention Network (GAT) and Graph Transformer (GT). Moreover, which is an original contribution of this work, training of GT was modified with an additional loss function component enabling easier explainability of the produced model. The experiments were conducted using datasets with chemical molecules where both classification and regression tasks are considered. The results show that additional constraint not only does not make the results worse but, in some cases, it improves predictions. | en_EN |
dc.identifier.citation | Durys B., Tomczyk A., Improvement of Attention Mechanism Explainability in Prediction of Chemical Molecules’ Properties. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 119-124, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.17. | |
dc.identifier.doi | 10.34658/9788366741928.17 | |
dc.identifier.isbn | 978-83-66741-92-8 | |
dc.identifier.uri | http://hdl.handle.net/11652/4792 | |
dc.identifier.uri | https://doi.org/10.34658/9788366741928.17 | |
dc.language.iso | en | en_EN |
dc.page.number | s. 119-124 | |
dc.publisher | Wydawnictwo Politechniki Łódzkiej | pl_PL |
dc.publisher | Lodz University of Technology Press | en_EN |
dc.relation.ispartof | Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Progress in Polish Artificial Intelligence Research 4, Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928. | |
dc.rights | Dla wszystkich w zakresie dozwolonego użytku | pl_PL |
dc.rights | Fair use condition | en_EN |
dc.rights.license | Licencja PŁ | pl_PL |
dc.rights.license | LUT License | en_EN |
dc.subject | attention mechanism | en_EN |
dc.subject | graph transformer | en_EN |
dc.subject | graph neural network | en_EN |
dc.subject | explainability | en_EN |
dc.subject | chemical molecules | en_EN |
dc.subject | mechanizm uwagi | pl_PL |
dc.subject | transformator grafowy | pl_PL |
dc.subject | grafowa sieć neuronowa | pl_PL |
dc.subject | wyjaśnialność | pl_PL |
dc.subject | cząsteczki chemiczne | pl_PL |
dc.title | Improvement of Attention Mechanism Explainability in Prediction of Chemical Molecules’ Properties | en_EN |
dc.type | Rozdział - monografia | pl_PL |
dc.type | Chapter - monograph | en_EN |