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bartdurys@gmail.com, arkadiusz.tomczyk@p.lodz.pl

Abstract. In this paper, the analysis of selected graph neural network op-
erators is presented. The classic Graph Convolutional Network (GCN) was
compared with methods containing trainable attention coefficients: Graph
Attention Network (GAT) and Graph Transformer (GT). Moreover, which
is an original contribution of this work, training of GT was modified with
an additional loss function component enabling easier explainability of the
produced model. The experiments were conducted using datasets with chem-
ical molecules where both classification and regression tasks are considered.
The results show that additional constraint not only does not make the results
worse but, in some cases, it improves predictions.
Keywords: attention mechanism, graph transformer, graph neural network,
explainability, chemical molecules

1. Introduction

Graphs for a long time were an uncommon data type in machine learning so-
lutions. Lately, many new methods for graph prediction tasks have been proposed,
including those utilizing attention-based graph neural network operators. Inter-
pretability of the attention mechanism in natural language processing problems
is a well-researched subject. In this work, we investigate it in the context of the
graph data structures. We evaluate the performance of the chosen operators on
selected benchmark graph datasets containing chemical molecules. An original
contribution of this work is a mechanism that forces attention coefficients to be
more precise in indicating, which neighbouring nodes, and consequently which
relations, are particularly important for prediction. The obtained outcomes reveal
that, although the used mechanism imposes additional constraints on the trained
neural network, it surprisingly does not aggravate the prediction results increasing,
at the same time, model explainability.
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2. Method

Three Graph Neural Network (GNN) operators were selected: a classic Graph
Convolutional Network [1] (GCN), a more sophisticated Graph Attention Network
[2] (GAT) and a Transformer’s adaptation called Graph Transformer [3] (GT). The
last two of them use the attention mechanism. The working principle (transfor-
mation of node embeddings h in layer t) for above operators can be summarized
as:

ht+1
i = σ

αii(W1ht
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∑
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αi j(W2ht
j + b2)

 (1)

which, although is not the most general formulation for all GNN operators, is
sufficient for further considerations. In this formula σ represents non-linear acti-
vation function, matrices W1, W2 as well as vectors b1, b2 are (if present) directly
trainable parameters and N(i) denotes set of nodes connected with given node i.
Coefficients α are fixed in GCN and depend on graph structure only. In GAT and
GT these are indirectly trainable attention coefficients that take into account em-
beddings of connected nodes. In both cases for a given node i those coefficients
are normalized with softmax function, which means that αi j ∈ [0, 1] for j ∈ N(i)
and their sum is equal to 1.

Training GT model it can be frequently observed that for a given node i coeffi-
cients αi j tend to have similar values. It means that all the neighbouring nodes have
similar influence on the calculated embedding of the node i and, consequently, it
does not allow to draw any conclusions explaining the final predictions. To make
those attention coefficients more interpretable we have introduced a new loss func-
tion component:

Lexplain =
∑

i

(
1 − max

j∈N(i)
αi j

)
(2)

It forces the model to direct its attention to only one neighbour while aggregating
embeddings from each and every node. This component utilizes the softmax nor-
malization of αi j for a given i since optimally there should be only one 1 value
among αi j and the rest of them should be equal to 0. The final loss function used
during training was the following:

L = Lprediction + λ · Lexplain (3)

where the first component was dependent on the considered task and it was MSE
for regression and cross-entropy for classification. The parameter λ controls trade-
off between those components, and it has been experimentally set to 0.1.

For experiments we have chosen two widely-used sources of chemical graph
data – MoleculeNet [4] for graph-level regression tasks and TUDataset [5] for
graph-level classification tasks. From each data source, we have selected three
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Table 1: Quality metrics for graph-level regression tasks from MoleculeNet.

Dataset Operator Validation set Test set

MSE Standard
deviation Best MSE Standard

deviation Best

ESOL

GCN 35.24 9.11 8.15 35.24 8.80 8.11
GAT 11.76 5.09 4.62 11.01 5.04 4.46
GT 32.07 18.40 5.61 31.58 17.80 5.41

GT with Lexplain 17.87 11.29 4.53 17.25 11.11 4.46

FreeSolv

GCN 78.64 38.21 17.42 75.11 34.37 17.01
GAT 36.02 16.94 14.42 33.95 15.02 14.17
GT 44.30 26.35 13.91 41.87 25.38 14.01

GT with Lexplain 34.71 11.35 14.14 34.11 17.25 13.86

Lipophilicity

GCN 12.65 6.75 2.34 12.69 6.84 2.35
GAT 10.67 4.54 2.12 10.64 4.58 2.16
GT 12.51 9.19 2.44 12.44 9.15 2.46

GT with Lexplain 2.62 0.80 1.62 2.56 0.77 1.64

datasets: ESOL (prediction of water solubility), FreeSolv (estimation of hydra-
tion free energy) and Lipophilicity (finding octanol/water distribution coefficient)
from MoleculeNet and AIDS (identification of molecule’s activity against HIV),
ENZYMES (assign a molecule to one of the six Enzyme Commission top-level
classes) and PROTEINS (prediction if a protein is an enzyme) from TUDataset. In
MoleculeNet feature vectors for each dataset contained nine numerical features de-
scribing atoms, e.g. its hybridization, while in TUDataset it was a one-hot encoded
representation of node class (chemical element in AIDS or secondary structure el-
ement in ENZYMES and PROTEINS).

To train and evaluate the performance of GNN operators on datasets, we have
split each dataset into training, validation, and test sets using an 80/10/10 propor-
tion. To ensure a fair comparison and easier interpretability, we have limited our
research to only single-headed attention mechanisms. For each operator, we have
selected two GNN layers with batch normalization, dropout and ReLU as acti-
vation function σ. After that, the global average pooling was used to aggregate
the calculated hidden node embeddings. Finally, we have used an MLP to gener-
ate our final predictions. We have repeated every experiment 50 times with 500
epochs per repeat, and averaged the results using the best epoch on the validation
set. This approach allowed us to obtain reliable and robust results for each dataset
and operator combination.

3. Results

Starting the analysis of the results from MoleculeNet’s datasets in the Table 1,
we can observe several interesting phenomena. First, which is expected, we can
see that operators with the attention mechanism perform better than simple GCN.
However, the GT operator suffers from a high standard deviation value, which in-
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Table 2: Quality metrics for graph-level classification tasks from TUDataset.

Dataset Operator Validation set Test set

Accuracy Standard
deviation Best Accuracy Standard

deviation Best

AIDS

GCN 80.22 2.81 88.50 79.84 2.27 84.00
GAT 79.84 2.74 85.50 79.91 2.55 86.00
GT 81.05 2.80 86.00 80.49 2.46 87.00

GT with Lexplain 79.75 2.76 86.00 80.03 2.42 86.00

ENZYMES

GCN 30.90 4.14 43.33 20.87 5.69 35.00
GAT 32.03 4.79 46.67 21.43 5.56 35.00
GT 35.17 3.45 43.33 24.03 5.80 40.00

GT with Lexplain 36.77 3.81 45.00 24.33 5.74 35.00

PROTEINS

GCN 73.69 3.99 81.08 68.88 5.27 78.57
GAT 73.39 3.43 81.08 68.55 4.63 76.79
GT 74.29 3.97 81.98 69.20 5.04 79.46

GT with Lexplain 74.22 3.64 81.98 68.66 4.50 78.57

dicates that it is difficult to train, much like the original Transformer. Surprisingly,
adding the Lexplain function significantly improves the training of the model.

When it comes to the evaluation of TUDataset, our results are close in value
to each other. As shown in the Table 2, the GT operator performs slightly better
overall. The biggest difference can be seen in the ENZYMES dataset, which has
six classes, whereas the other problems are binary classifications. These results
suggest that the GT operator may be a better choice for classifications with a large
number of classes.

To show the impact of Lexplain component, we have prepared visualisations of
attention coefficients, which are shown in Figure 1. Values near each node repre-
sent weights during the aggregation of its neighbours. In the first figure, we can
observe that the proposed modification made the nitrogen atom more important. In
the second figure, the model focused more on helices rather than sheets elements.
This behaviour exhibited by the model could be a valuable source of information
for explainability. In organic compounds, there are many chemical substituents
that can have an impact on the molecules’ properties. By utilizing a modified loss
function, we may be able to better represent and understand their effects, ultimately
leading to improved results, as demonstrated in this paper.

4. Conclusions

In this work, a modification of the training loss function for attention-based
models was proposed. Its goal is to improve the interpretability of attention co-
efficients. Outcomes reveal that indeed it works correctly and, what is more, it
does not worsen prediction results. An explanation of this phenomenon can be the
fact that network architectures are frequently overdesigned and the proposed con-
straint allows to select the model with desired properties out of many equivalent
(similarly predicting) solutions. The quality of the discussed method was assessed

122 Progress in Polish Artificial Intelligence Research 4



(a) normal (b) with Lexplain

(c) normal (d) with Lexplain

Figure 1: Attention visualisation: (a), (b) – benzonitrile from the FreeSolv set with
GT normalization coefficients from the first layer. C – carbon, N – nitrogen, (c),
(d) – enzyme from the ENZYMES set with GT normalization coefficients from the
first layer. H – helix, S – sheet. Source: own work.

using datasets with chemical molecules. It should be, however, emphasized that it
can be of use in any task where an attention mechanism is used, leading to better
explainability of model behaviour.
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