Navier–Stokes problems with random coefficients by the Weighted Least Squares Technique Stochastic Finite Volume Method

dc.contributor.authorKamiński, Marcin
dc.contributor.authorOssowski, Rafał Leszek
dc.date.accessioned2016-02-04T11:18:10Z
dc.date.available2016-02-04T11:18:10Z
dc.date.issued2014
dc.description.abstractThe main aim of this article is numerical solution to the Navier–Stokes equations for incompressible, non-turbulent and subsonic fluid flows with Gaussian physical random parameters. It is done with the use of the specially adopted Finite Volume Method extended towards probabilistic analysis by the generalized stochastic perturbation technique. The key feature of this approach is the weighted version of the Least Squares Method implemented symbolically in the system MAPLE to recover nodal polynomial response functions of the velocities, pressures and temperatures versus chosen input random variable(s). Such an implementation of the Stochastic Finite Volume Method is applied to model 3D flow problem in the statistically homogeneous fluid with uncertainty in its viscosity and, separately, coefficient of the heat conduction. Probabilistic central moments of up to the fourth order and the additional characteristics are determined and visualized for the cavity lid driven flow owing to the specially adopted graphical environment FEPlot. Further numerical extension of this technique is seen in an application of the Taylor–Newton–Gauss approximation technique, where polynomial approximation may be replaced with the exponential or hyperbolic ones.en_EN
dc.identifier.citationArchives of Civil and Mechanical engineering, Vol. 14, Issue 4, pages 745-756
dc.identifier.issn1644-9665
dc.identifier.urihttp://hdl.handle.net/11652/1093
dc.identifier.urihttp://www.sciencedirect.com/science/article/pii/S164496651300157X
dc.language.isoenen_EN
dc.publisherElsevier Urban & Partner Sp. z o.o.en_EN
dc.relation.ispartofseriesArchives of Civil and Mechanical engineering, Vol. 14, Issue 4, 2014en_EN
dc.subjectStochastic Finite Volume Methoden_EN
dc.subjectGeneralized stochastic perturbation techniqueen_EN
dc.subjectWeighted Least Squares Methoden_EN
dc.subjectNavier–Stokes equationsen_EN
dc.subjectSymbolic computingen_EN
dc.titleNavier–Stokes problems with random coefficients by the Weighted Least Squares Technique Stochastic Finite Volume Methoden_EN
dc.typeArtykułpl_PL
dc.typeArticleen_EN

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
Navier_Stokes_problems_Kaminski_2014.pdf
Rozmiar:
4.86 MB
Format:
Adobe Portable Document Format
Opis:

Licencja

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
license.txt
Rozmiar:
1.71 KB
Format:
Item-specific license agreed upon to submission
Opis: