Wydział Mechaniczny / Faculty of Mechanical Engineering / W1
Stały URI zbioruhttp://hdl.handle.net/11652/1
Przeglądaj
2 wyniki
Wyniki wyszukiwania
Pozycja Manufacturing. Instructions for Laboratory(Wydawnictwo Politechniki Łódzkiej, 2022) Gumienny, Grzegorz; Władysiak, Ryszard; Januszewicz, Bartłomiej; Just, Paweł; Koter, Katarzyna; Witkowski, Błażej; Zgórniak, Piotr; Zora, Andrzej; Deja, MariuszMaking things has been an essential activity of human civilizations since before recorded history. Today, the term manufacturing is used for this activity. For technological and economic reasons, manufacturing is important to the welfare of the all developed and developing nations. Technology can be defined as the application of science to provide society and its members with those things that are needed or desired. Technology affects our daily lives, directly and indirectly, in many ways. Manufacturing is the critical factor that makes technology possible. The word manufacture is derived from two Latin words, manus (hand) and factus (make); the combination means made by hand. The English word manufacture is several centuries old, and “made by hand” accurately described the manual methods used when the word was first coined. Manufacturing – Instructions for laboratory, is designed for a first course or two-course sequence in manufacturing at the bechelor’s level in mechanical, industrial, and manufacturing engineering curricula. Given its coverage of engineering materials, it is also suitable for materials science and engineering courses that emphasize materials processing. Finally, it may be appropriate for technology programs related to the preceding engineering disciplines. Most of the script’s content is concerned with manufacturing processes (about 65% of the text), but it also provides significant coverage of engineering materials and production systems. Materials, processes, and systems are the basic building blocks of modern manufacturing and the three broad subject areas covered in the script.Pozycja Effect of Water Mist Cooling on Microstructure of Hypereutectic Al-Si Alloy(2014) Władysiak, Ryszard; Kozuń, ArturThe work is a continuation of research on the use water mist cooling in order to increase efficiency of die-casting aluminum alloys using multipoint water mist cooling system. The paper presents results of investigation of crystallization process and microstructure of synthetic hypereutectic AlSi20 alloy. Casts were made in permanent mold cooled with water mist stream. The study was conducted for unmodified AlSi20 alloy and modified with phosphorus, titanium and boron on the research station allowing sequential multipoint cooling using a dedicated program of computer control. The study demonstrated that the use of mold cooled with water mist stream allows the formation of the microstructure of hypereutectic silumins. A wide range of solidification temperature of hypereutectic silumins increases the potential impact of changes in the cooling rate on a size, a number and a morphology of preeutectic silicon and eutectic α+β (Al+Si).