Wydział Technologii Materiałowych i Wzornictwa Tekstyliów / Faculty of Material Technologies and Textile Design / W4

Stały URI zbioruhttp://hdl.handle.net/11652/4

Przeglądaj

Wyniki wyszukiwania

Teraz wyświetlane 1 - 2 z 2
  • Pozycja
    In-Compost Biodegradation of PLA Nonwovens
    (Instytut Biopolimerów i Włókien Chemicznych (IBWCh) , Łódź, Polska, 2014) Gutowska, Agnieszka; Jóźwicka, Jolanta; Sobczak, Serafina; Tomaszewski, Wacław; Sulak, Konrad; Miros, Patrycja; Owczarek, Monika; Szalczyńska, Magdalena; Ciechańska, Danuta; Krucińska, Izabella
    Presented in this work are the results of an investigation into the biodegradation of selected nonwoven materials made of commercial poly[(DL)-lactide] – PLA 6252D supplied by Nature Works® LLC, USA. The biodegradation was examined under laboratory conditions, simulating composting by the mass-loss method at constant process parameters: temperature t = 58 ± 2 °C, pH 7 and inoculum humidity W = 52.6%. The nonwovens examined, with a surface density of about 60 g/m2, revealed a varied crystallinity degree in the range of 10.4 - 35.6% and fibre diameter of 8.2 - 10.9 μm. The nonwovens were formed by the spun-bond method from a melt at 211 - 213 °C on a laboratory stand. The commercial PLA 6252D was also examined. The polymer PLA 6252D and nonwoven materials made thereof are entirely biodegradable in the research environment applied, and after 16 weeks of biodegradation weight loss in the materials reaches 100%.
  • Pozycja
    Accelerated Ageing of Implantable, Ultra-Light, Knitted Medical Devices Modified by Low-Temperature Plasma Treatment - Part 2. Effect on chemical Purity
    (Instytut Biopolimerów i Włókien Chemicznych (IBWCh) , Łódź, Polska, 2014) Jóźwicka, Jolanta; Gzyra-Jagieła, Karolina; Gutowska, Agnieszka; Struszczyk, Marcin H.; Kostanek, Krzysztof; Cichecka, Magdalena; Wilbik-Hałgas, Bożena; Kowalski, Krzysztof; Kopias, Kazimierz; Ciechańska, Danuta; Krucińska, Izabella
    The impact of simulated storage conditions (accelerated ageing) for the chemical purity of innovative ultra-light textile implants (knitted) designed for use in urogynaecology and general surgery (procedures in the treatment of female incontinence, in hernia treatment and vagina plastic surgery) was estimated. The chemical purity of the knitted implants designed: untreated and with low-temperature plasma surface treatment in the presence of the fluoroorganic compounds was estimated. The acceptability of the risk related to the impact of storage conditions on the chemical purity of the implant products was simulated. The examination was based on Standard PN-EN ISO 10993-18:2008: “Biological evaluation of medical devices - Part 18: Chemical characterisation of materials” and was assessed in accordance with Polish and European standards.