Artykuły (WBiNoŻ)
Stały URI dla kolekcjihttp://hdl.handle.net/11652/147
Przeglądaj
4 wyniki
collection.search.results.head
Pozycja The DFT study on the electronic structure of boronic acid derivatives and its esters with fructose(Wydawnictwo Politechniki Łódzkiej, 2018) Kur, Katarzyna; Kowalska-Baron, Agnieszka; Miller, EwaTheoretical investigations are carried out to examine the geometrical structure and parameters of electron transitions to the lowest excited states of two boronic acid derivatives: 3-aminophenylboronic acid and 3-(acetamidomethyl)phenyl boronic acid and its cycling esters with fructose, using the DFT based 6-31 G(d,p) method. The most stable ester isomer of each acid has been selected. Predicted excitation wavelength are shorter (less than 0.5 eV) than experimental ones, what is in a good agreement considering limitations of the DFT method. In case of almost every calculated molecule the analysis of electronic transitions shows that transition S0→S1 involves electron transfer mainly from the HOMO to LUMO orbital.Pozycja Optical properties of (3-(acetamidomethyl)phenyl) boronic acid and its interactions with selected sugars(Wydawnictwo Politechniki Łódzkiej, 2018) Kur, Katarzyna; Przybyt, Małgorzata; Miller, Ewa(3-(Acetamidomethyl)phenyl)boronic acid (3AAPBA)has at pH 7 absorbance maximum at 270 nm with molar absorbance coefficient 516 M-1cm-1. 3AAPBA exhibits weak fluorescence with maximum at 297 nm and quantum yield 0.062 ± 0.001. Fluorescence decay is monoexponential and the lifetime is 2.05 ± 0.01 ns. Interactions of 3AAPBA with selected sugars were studied by absorbance, steady-state and time-resolved fluorescence measurements. At pH 7 fluorescence of 3AAPBA is quenched only by fructose (with quenching constant 67.9 M-1) and to some extend by galactose. Addition of these two monosaccharides causes also changes of absorbance spectra of 3AAPBA. Acid-base dissociation of free 3AAPBA and its esters with sugars was studied by absorbance and steady-state fluorescence measurements in pH range from 4.5 to 11.00. Esterification of phenylboronic acid derivatives by sugars leads to increased acidity of them. In case of 3AAPBA the obtained values of pK indicate that affinity of studied sugars towards it can be ordered as follows: fructose > galactose > glucose > maltose > lactose > sucrose. At pHs higher than pK the fluorescence decays turn to biexponential with additional shorter component in lifetime which we propose to attribute to anionic form of 3AAPBA or its esters.Pozycja The study of phenylboronic acid optical properties towards creation of a glucose sensor(Wydawnictwo Politechniki Łódzkiej, 2014) Kur-Kowalska, Katarzyna; Przybyt, Małgorzata; Miller, EwaThe article presents influence of pH and glucose concentration on phenylboronic acid (PBA) fluorescence studied by steady-state and time-resolved measurements. Fluorescence of PBA decreases with growing pH. These changes reflected acid-base equilibrium of PBA and allowed to estimate value of pKd as 9.2, which is comparable with literature data. Fluorescence intensity of phenylboronic acid is quenched in presence of glucose. The effect of quenching is more pronounced with increasing pH. At pH 7 quenching can be described by Stern-Volmer equation, at pH 8 and 9 by modified one. The obtained quenching constants are growing with pH increase. The quenching of phenylboronic acid fluorescence by glucose is a static one, which is confirmed by time-resolved measurements. Two lifetimes were found for fluorescence decay of phenylboronic acid. The lifetimes are practically independent on pH and glucose concentration and also fraction of both lifetimes are nearly the same. The obtained Stern-Volmer constants can be interpreted as apparent equilibrium constants of ester formation between acid and glucose.Pozycja ZnS Cu-doped quantum dots(Wydawnictwo Politechniki Łódzkiej, 2014) Ziółczyk, Paulina; Miller, Ewa; Przybyt, MałgorzataThe paper presents a survey of literature on the structure and optical properties of ZnS and copper ion-doped ZnS quantum dots. The effect of other metal dopants on the spectral properties of ZnS:Cu quantum dots was also considered. The influence of such parameters as dopant concentration, temperature of the synthesis and compounds which form or modify the additional layer on dots on spectral properties of the quantum dots was described. Examples of application of ZnS:Cu quantum dots are also given.