Artykuły (WM)

Stały URI dla kolekcjihttp://hdl.handle.net/11652/206

Przeglądaj

collection.search.results.head

Teraz wyświetlane 1 - 4 z 4
  • Pozycja
    Propagation of the Lamellar Cracks.
    (Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2014) Jaroniek, Mieczysław; Niezgodziński, Tadeusz
    The aim of the study is to include studying the effects of the interaction of lamellar cracks and their effect on the degradation of the structure. Lamellar cracking phenomenon is most common in the construction of welded ship hulls, bridges, pressure vessels and piping. The structures of these, as a result of errors in production and welding cracks. The sudden breakage occurs in the construction of real time, although they have been designed properly in terms of both the volume of the stress and strain. The growth of these cracks, at a rate equal to the speed of sound in the material, it is a sudden breakage.
  • Pozycja
    Study of the Formation of Lamellar Cracks.
    (Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2014) Jaroniek, Mieczysław; Niezgodziński, Tadeusz
    In rolled sheets, non-metallic inclusions are distributed along the thickness of the sheet as narrow lines running parallel to the rolling direction. Such inclusions are the nuclei of lamellar cracks. This work presents the application of the numerical method for study of lamellar cracking. Numerical models of samples with long artificial fissures set in the area of the sheet axis were studied along with other encountered inclusion distributions. Changes in the stress state in the area of the inclusion were observed as the load increased. Stress concentration leads to the formation of lamellar cracks - the joining of voids in the direction parallel to the exterior surface of the sheet (so-called "terraces" are formed) and at angles (so-called "jogs" are formed). The results of experimental tests were compared with the results of numerical calculations using the finite element method.
  • Pozycja
    Modeling Lamellar Cracks.
    (Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2013) Jaroniek, Mieczysław; Niezgodziński, Tadeusz
    In this work, studies of models simulating lamellar cracks were conducted. These cracks are formed in rolled sheets with non-metallic inclusions. Studies of lamellar cracks began in the 1960s, but there is still no satisfactory theory explaining their formation. In this work, the application of modeling of samples with non-metallic inclusions for the study of lamellar cracking has been presented. Studies were conducted using two research methods: the photoelastic method and the finite element method. The possibility of crack formation was analyzed in models generated from images obtained from metallographic specimens.
  • Pozycja
    Application of Photoelasticy for Study of Lamellar Cracks.
    (Lodz University of Technology. Faculty of Mechanical Engineering. Department Division of Dynamics., 2013) Jaroniek, Mieczysław; Niezgodziński, Tadeusz
    In rolled sheets, non–metallic inclusions are distributed along the thickness of the sheet as narrow lines running parallel to the rolling direction. Such inclusions are the nuclei of lamellar cracks. This work presents the application of the photoelastic method for study of lamellar cracking. Photoelastic models of samples with long artificial fissures set in the area of the sheet axis were studied along with other encountered inclusion distributions. The studied samples were placed in a polariscope and subjected to uniform tension; isochromatic images were obtained. Changes in the stress state in the area of the inclusion were observed as the load increased. Stress concentration leads to the formation of lamellar cracks – the joining of voids in the direction parallel to the exterior surface of the sheet (so–called ”terraces” are formed) and at angles (so–called ”jogs” are formed). The results of photoelastic tests were compared with the results of numerical calculations using the finite element method.