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Abstract. In this paper we examine whether a quantum computer can effi-
ciently simulate time evolution of a one dimensional Schrodinger particle.
Two cases are considered: free particle and particle dispersed on a rect-
angular potential. In order to simulate the Schrodinger particle, we use a
quantum algorithm based on the procedure of diagonalisation of time evo-
lution operator. The procedure of diagonalisation is based on the Quantum
Fourier Transform (QFT) algorithm. The effects of simulation are presented
in the form of figures.

We also compare the results obtained from quantum algorithm with the
results of classical simulations (Cayley’s method).
Keywords: quantum computations, quantum simulations, Schrodinger par-
ticle.

1. Introduction

There is a growing need for computing power. Currently existing technologies,
based on miniaturisation, are about to reach the end of their possibilities. There-
fore, we are searching for new solutions. One alternative is a quantum computer
[1]. Although its practical implementations have not been built yet, its existence



96 Quantum Simulations of Particle. . .

seems to be possible. Therefore, it is worth examining the properties of such ma-
chines.

Today we know some quantum algorithms that are faster than their best clas-
sical counterparts. They include Shor [2] and Grower [3] algorithms. Another
promising application of quantum computer are quantum simulations, i.e. the com-
puter modelling of behaviour of physical quantum systems.

As is well known, simulations of quantum systems performed using conven-
tional computers are not very effective. This follows from the fact that the number
of states that a quantum system can take grows exponentially with its size. For
example, a system composed of n-spins (with each individual having two base
states) may receive a total of 2" base states. This means that for classical computer
the memory resources and time required to simulate grow exponentially with n. In
the case of a quantum computer, the situation is different. The heart of such com-
puter is n-qubit register, which in itself is a quantum system that could take the 2"
base states. This means that the relationship between the size of quantum computer
(register) and the size of the simulated quantum system is linear. Also the number
of elementary operations (quantum gates) to be performed on the register as a rule
does not depend exponentially on n. So we have a potentially large profit, namely
the ability to efficiently simulate quantum systems with a relatively small quantum
register.

Why are simulations of quantum systems interesting for us? Microscope sys-
tems such as elementary particles or chemical molecules are quantum systems.
This means that accurate simulation of their behaviour may be conducted only
on the basis of quantum mechanics. Among the particles that the researchers are
particularly interested in are, for example, complex polymers used in medicine
(e.g. drugs). However, for the time being, such complex cases are not analysed
in this work. The present discussion has been limited to the analysis of the free
Schrédinger particle in one dimension or particle dispersed on a rectangular po-
tential (Fig. 1). Our aim is to examine the effectiveness of such an approach.

In order to simulate quantum register we wrote a program (in C++ language).
It allows us to test (of course, for the register of small size) the software of the
future quantum computer. Applications of classical computers in simulations of
quantum computing is widely presented in the literature. In particular, it is worth
mentioning here of many core computer architectures (many core CPU [4, 5, 6],
many cores GPU [7], clusters etc.). There are also special packages for commercial
software (e.g. for Mathematica [8]). An introduction to the basic computational
models used in quantum information theory can be found in [9].
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2. Simulations of the Schrodinger particle

The simulation algorithm used by us (described in the literature [10, 11, 12, 13]
is based on the procedure of diagonalisation of time evolution operator. The pro-
cedure of diagonalisation is based on the the Quantum Fourier Transform (QFT).

Before we present the algorithm, let us briefly recall the basic properties of the
Schrodinger particle and outline the basic ideas on which this algorithm is based.

Time evolution of the Schrodinger particle is described by the Schrodinger
equation. In one-dimensional case, it takes the form:

d .
ihW(x, 1) = H¥(x. 1) (1)

where
H = Hy+ V(x) (2)

is the Hamiltonian consisting of a free part Hy = p?/(2m) and potential V(x)
describing interactions with external force. In our considerations confine ourselves
to the (stationary) rectangular potential (Fig. 1).

The formal solution of the Eq. (1) is a expression in following form:

Y(x, t1) = exp(—iH At/h) P(x, tp) = exp(—i(Hy + V(x))AD)P(x, tp); 3)

which describes the evolution of the system from the initial state at the time #; to
state at time t; = o + At.

In the case A+ — 0 (which corresponds appropriately short time-step of the
simulation) we can use the approximation:

exp(—i(Ho + V(x))At/f) = exp(—i HyoAt/h) exp(—i V(x)At/h) “)

which allows a separate simulation of the free evolution and the contribution from
the potential.

Operator exp(—i V(x)At/h) acting on the wave function W¥(x, ) only multiplies
it by the phase factor. The situation is different for the free evolution operator
exp(—i HoAt/h). However, if the wave function W(x, ¢) is presented in the momen-
tum representation P(p, 1) then the action of free evolution operator also comes
down to multiplying the wave function by the phase factor:

exp(—i HoAt/m)¥(p, 1) = exp(i p* /(2m)¥(p, 1). )
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The transition between the two representations is described by Fourier transform:
P(p, 1) = F{¥(x, 1)) (0)

This means that the action of the time evolution operator (4) on the state of the
system can be written as follows:

exp(—i(Ho+V(x)At/R)P(x, 1) = exp(—i V(X)AL/RF ~Hexp(=i p*/Qmh)F{¥(x, 1))}
@)
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Figure 1. Rectangular potential. The numerical values of the x-axis denote the
number of samples

3. Realisation of the quantum algorithm

An arbitrary state of the n-qubit register can be written as:

2"—1

P = Z e Ik, ®)

k=0

where c¢; are complex coefficients, and |k) are base states of register which are
tensor products of base states of individual qubits:

kY = Ign-1) - - - lgq0), )

where g; take the values O or 1.
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In order to encode the wave function of the Schrodinger particle W(x) in the
quantum register we have to perform the discretisation. Then, we make the follow-
ing assignment:

cr = Y(x) = Y(Axk) (10)
where Ax is a parameter determining the spatial distance between adjacent samples
of the wave function W(x). Parameter k=0, 1, ...2" — 1 numbers the successive
samples.

Simulation of time evolution of the particle is based on a rule set by Eq. (7)
wherein the continuous Fourier transform ¥ is replaced by a discrete quantum
Fourier transform (QFT).
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Figure 2. The scheme of a quantum algorithm simulating time evolution of the
Schrodinger particle

Block diagram of the algorithm is shown in Fig. 2. Blocks QFT and RQFT
implement respectively: Quantum Fourier Transform and Inverse Quantum Fourier
Transform. Blocks FE and POT implement phase shift operations exp(—i p?/(2mh))
and exp(—iVpAt/h), respectively.

In our simulation we use the standard implementation of QFT and RQFT algo-
rithms. Their brief description is given in Appendix A. Implementation of the free
evolution block FE and potential block POT are shown sequentially in Figs. 3-6.
In the case of FE block we use controlled phase shift gates Ry:

0)10)  — 10510
0)1)  —|0)I1)
1DI0) — [1)I0)
DIy — exp(ig) [DI1). (11)
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Figure 3. Implementation of FE block - free evolution for p > 0. Gates labeled by
Ry are controlled phase shift gates with angle ¢ = —2m?hAt/(mx2, ) f
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Figure 4. Implementation of the second part of FE block - free evolution for
p < 0. Gates labeled by Ry are controlled phase shift gates with angle ¢ =

202 1At [ (mx2,.) f

In the case of the POT block, we additionally used NOT gates:
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and controlled negation (CNOT) gates:
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Figure 5. Implementation of POT block - implementation of rectangular potential
shown in Fig. 1. The value of f parameter is given by f = —Ar Vy/h
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Figure 6. Implementation of the three-input controlled phase shift gate on two-
input gates (from [14])

4. Results of the simulations. Comparison with classical
algorithm

The algorithm described in previous section was used to simulate Schrédinger
particle in the register of n = 9 qubits length (512 sample points). The initial state
of the particle corresponds to a Gaussian wave packet in the form:

g = (0)? L K ) (12)

=¥ =Cy
cx = ¥ = Cyexaf 4d? h

where C,, is a normalisation constant, and x; = k Ax.

Position of the particle ranged from x,,,;;, = 0 to X;;,4x = 50nm which gives Ax =
Xmax/2" = 98pm. Initial parameters of the Gaussian packet (12) were as follows:
(x) = 5nm, dx = 1.0nm, E; = (p)*/(2m) = 1.0eV where m = 9.1 * 10‘31kg is
mass of electron. In all simulations time step value was equal to At = 5 10~ !7s.

For comparison, classical simulation for exactly the same parameters has also
been done. We used Cayley’s method (described in Appendix B) for At = 5x107!s
and for 512 sample points.
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4.1. Simulation of the free particle

The results of the simulations for Vy = 0 are shown in Fig. 7. Initial state
corresponds to black curve. Results of quantum simulations (for times: #; = 360At,
ty = 720At and t3 = 1080Ar) are given by blue curves. Results of Cayley’s method
(for the same values of 7) are given by red curves.

|Psi]~2

o "64 "128 "2 256 "azn " 364 T44s

Figure 7. Free evolution of Gaussian wave packet in position representation

4.2. Simulation in the presence of a rectangular potential

|Psi|~z2

Figure 8. Evolution of Gaussian wave packet in position representation for rectan-
gular potential

The results of simulations for Vy = 1.0eV are shown in Fig. 8. Initial state
corresponds to black curve. Results of quantum simulation (for times: #; = 360At,
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ty = 720At and t3 = 1080Ar) are given by blue curves. Results of Cayley’s simula-
tion (for the same values of ¢) are given by red curves.

5. Conclusions and comments for the future

o We see the potential usefulness of the presented algorithm to simulate quan-
tum systems. For one time step in the register of n qubits length (N = 2"
spatial samples) we need only 3/2n% + 5/2n + 19 quantum logic gates.! It
gives time complexity equal to O(log? N). In comparison, the classical algo-
rithms provide time complexity of a polynomial character.

e Both methods of simulation (quantum and Cayley’s) give similar results.
Some discrepancies are due to numerical errors of both methods. Exami-
nation the relationship between value of the time step At (or the density of
spatial sampling Ax) and the accuracy of the results will be made in subse-
quent work.

e In our work we have conducted no analysis of the process of initial data
entry in the register and outputting the final results from the register. It is
well known that from a quantum register storing the 2" states (data), only
n states (data) can be read as a result of quantum measurement (no-cloning
of the quantum state). Ability to read useful information from the final state
of the register (as, for example, transition and reflection coefficients of the
packet from threshold of the potential) will be examined in the next work.

o We do not review here factors affecting the accuracy of the results such as
accuracy of quantum gates realization or noise in the register (decoherence).
The analysis of these problems we will take in future research. In particu-
lar, it seems interesting to test the usefulness of Quantum Error Correcting
Codes in quantum simulations.

Appendix A. Quantum Fourier Transform

In our simulation the standard implementation of QFT and RQFT algorithms
has been used. Both of them are well known and widely presented in the literature

"We need 1/2(n? + n) gates for each of QFT, RQFT and FE (for p > 0). Additionally we need n
gates for implementation of second part of FE block, and 19 gates for implementation of POT block.
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(including textbooks such as [14, 15]). We present them merely as a reminder.
Implementation of the QFT and RQFT are shown in Fig. 9 and Fig. 10 respec-
tively. Gates denoted by H are the Hadamard gates:

1
0) - —(|0 1
10) \5(|>+|>)

1
1) » —(0y -1
11 \5(|>|>)

and gates denoted by R are controlled phase shift gates (Eq. (11)) where ¢ = 7/ f.
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Figure 9. Block diagram of QFT
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Figure 10. Block diagram of RQFT
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Appendix B. Brief description of the classical algorithm
used for comparison

As a comparative method, we used the classical Cayley’s method [16]. It is
based on Schroédinger equation of motion written in the following form:

(A +1/2iHdt/R)¥P(t +dt) = (1 — 1/2i Hdt/h)¥(¢) (13)

where H is the hamiltonian (2) with p = —ifid, and second derivative is carried
out by three-point approximation. In such a situation equation for one time step of
simulation takes the form:

—iAY11(82) + Cy¥n(t2) — iAY,-1(12) = iAY i1 (1) + CWn(t1) +iAY -1 (1) (14)

where t, = t; + dt, A = hdt/(4mAx?), C, = 1 + i(2A + V,dt/(2h)) while V,, are
sampled values of the potential.
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