Contextual ES-adRNN with Attention Mechanisms for Forecasting
Data
2023
Autorzy
Tytuł czasopisma
ISSN czasopisma
Tytuł tomu
Wydawca
Wydawnictwo Politechniki Łódzkiej
Lodz University of Technology Press
Lodz University of Technology Press
Abstrakt
In this study, we propose a hybrid contextual forecasting model
with attention mechanisms for generating context information. The model
combines exponential smoothing and recurrent neural network to extract and
synthesize information at both the individual series and collective dataset
levels. The model is composed of two simultaneously trained tracks: context
track and main track. The main track generates forecasts and predictive intervals,
while the context track generates additional inputs for the main track
based on representative time series. Attention mechanisms are integrated
into the model in six different variations to adjust the context information to
the forecasted series and so increase the predictive power of the model.
Opis
Słowa kluczowe
hybrid forecasting models, recurrent neural networks, attention mechanism, contextual forecasting, hybrydowe modele prognozowania, rekurencyjne sieci neuronowe, mechanizm uwagi, prognozowanie kontekstowe
Cytowanie
Smyl S., Dudek G., Pełka P., Contextual ES-adRNN with Attention Mechanisms for Forecasting. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 101-106, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.14.