Improving RGB-D Visual Odometry with Depth Learned from a Better Sensor’s Output

Miniatura

Data

2023

Tytuł czasopisma

ISSN czasopisma

Tytuł tomu

Wydawca

Wydawnictwo Politechniki Łódzkiej
Lodz University of Technology Press

Abstrakt

This paper compares the results obtained from an indoor Visual Odometry (VO) system with RGB-D images provided by a Kinect v1 camera against those achieved by a VO with enhanced depth channel. For this purpose, we have used two classic image inpainting methods and a deeplearning approach for scene depth estimation employing Kinect v2 depth maps as reference data. The ability to enhance lower-quality data is crucial to reduce the cost of VO applications because higher-quality information can be infused through deep learning in systems using budget sensors.

Opis

Słowa kluczowe

visual odometry, RGB-D sensors, inpainting, deep learning, odometria wizualna, czujniki RGB-D, inpainting, głębokie uczenie się

Cytowanie

Kostusiak A., Improving RGB-D Visual Odometry with Depth Learned from a Better Sensor’s Output. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 429-434, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.67.

Kolekcje

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced