Evaluating semantic similarity with a new method of path analysis in RDF using genetic algorithms

dc.contributor.authorStrobin, Łukasz
dc.contributor.authorNiewiadomski, Adam
dc.date.accessioned2015-06-03T11:16:03Z
dc.date.available2015-06-03T11:16:03Z
dc.date.issued2013
dc.description.abstractThis paper presents a novel method of evaluating semantic similarity by means of path analysis in RDF databases. Similarity is calculated by assignining each property (predicate in RDF terms) a weight, which is found using a genetic optimization algorithm. Presented method exhibits an advatage over existing methods, because of its flexibility and the fact that no prior knowledge of a particular database is necessary. This paper also presents an exemplary application of the method - recommendation engine. Proposed method is applied to a well known problem - music recommendation based on DBPedia. Results obtained in the experiment positively verify its advanntages and usefulness.en_EN
dc.formatapplication/pdf
dc.identifier.citationJournal of Applied Computer Science., 2013 Vol.21 nr 2 s.137-151
dc.identifier.issn1507-0360
dc.identifier.other0000043770
dc.identifier.urihttp://hdl.handle.net/11652/476
dc.language.isoen
dc.publisherWydawnictwo Politechniki Łódzkiejpl_PL
dc.publisherLodz University of Technology. Pressen_EN
dc.relation.ispartofseriesJournal of Applied Computer Science., 2013 Vol.21 nr 2en_EN
dc.titleEvaluating semantic similarity with a new method of path analysis in RDF using genetic algorithms
dc.typeArtykuł

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
Evaluating_semantic_similarity_Strobin_2013.pdf
Rozmiar:
176.78 KB
Format:
Adobe Portable Document Format