Pedestrian Detection with High-resolution Event Camera

dc.contributor.authorWzorek, Piotr
dc.contributor.authorKryjak, Tomasz
dc.date.accessioned2023-09-21T07:47:04Z
dc.date.available2023-09-21T07:47:04Z
dc.date.issued2023
dc.description.abstractDespite the dynamic development of computer vision algorithms, the implementation of perception and control systems for autonomous vehicles such as drones and self-driving cars still poses many challenges. A video stream captured by traditional cameras is often prone to problems such as motion blur or degraded image quality caused due to challenging lighting conditions. In addition, the frame rate – typically 30 or 60 frames per second – can be a limiting factor in certain scenarios. Event cameras (DVS – Dynamic Vision Sensor) are a potentially interesting technology to address the above mentioned problems. In this paper, we compare two methods of processing event data by means of deep learning for the task of pedestrian detection. We used a representation in the form of video frames, convolutional neural networks and asynchronous sparse convolutional neural networks. The results obtained illustrate the potential of event cameras and allow the evaluation of the effectiveness and efficiency of the methods used for high-resolution (1280 x 720 pixels) footage.en_EN
dc.identifier.citationWzorek P., Kryjak T., Pedestrian Detection with High-resolution Event Camera. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 55-60, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.7.
dc.identifier.doi10.34658/9788366741928.7
dc.identifier.isbn978-83-66741-92-8
dc.identifier.urihttp://hdl.handle.net/11652/4782
dc.identifier.urihttps://doi.org/10.34658/9788366741928.7
dc.language.isoenen_EN
dc.page.numbers. 55-60
dc.publisherWydawnictwo Politechniki Łódzkiejpl_PL
dc.publisherLodz University of Technology Pressen_EN
dc.relation.ispartofWojciechowski A. (Ed.), Lipiński P. (Ed.)., Progress in Polish Artificial Intelligence Research 4, Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.
dc.rightsDla wszystkich w zakresie dozwolonego użytkupl_PL
dc.rightsFair use conditionen_EN
dc.rights.licenseLicencja PŁpl_PL
dc.rights.licenseLUT Licenseen_EN
dc.subjectpedestrian detectionen_EN
dc.subjectevent cameraen_EN
dc.subjectconvolutional neural networksen_EN
dc.subjectsparse convolutional neural networksen_EN
dc.subjectdetekcja pieszychpl_PL
dc.subjectkamera zdarzeńpl_PL
dc.subjectsplotowe sieci neuronowepl_PL
dc.subjectrzadkie splotowe sieci neuronowepl_PL
dc.titlePedestrian Detection with High-resolution Event Cameraen_EN
dc.typeRozdział - monografiapl_PL
dc.typeChapter - monographen_EN

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Ładowanie...
Miniatura
Nazwa:
7. Pedestr_detect_Wzorek_Kryjak_2023.pdf
Rozmiar:
539.91 KB
Format:
Adobe Portable Document Format
Opis:

Licencja

Teraz wyświetlane 1 - 1 z 1
Ładowanie...
Miniatura
Nazwa:
license.txt
Rozmiar:
1.71 KB
Format:
Item-specific license agreed upon to submission
Opis:

Kolekcje