Multi-task Learning for Classification, Segmentation, Reconstruction, and Detection on Chest CT Scans
dc.contributor.author | Hryniewska-Guzik, Weronika | |
dc.contributor.author | Kędzierska, Maria | |
dc.contributor.author | Biecek, Przemysław | |
dc.date.accessioned | 2023-09-22T10:05:19Z | |
dc.date.available | 2023-09-22T10:05:19Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Lung cancer and COVID-19 have one of the highest morbidity and mortality rates in the world. For physicians, the identification of lesions is difficult in the early stages of the disease and time-consuming. Therefore, multi-task learning is an approach to extracting important features, such as lesions, from small amounts of medical data because it learns to generalize better. We propose a novel multi-task framework for classification, segmentation, reconstruction, and detection. To the best of our knowledge, we are the first ones who added detection to the multi-task solution. Additionally, we checked the possibility of using two different backbones and different loss functions in the segmentation task. | en_EN |
dc.identifier.citation | Hryniewska-Guzik W., Kędzierska M., Biecek P., Multi-task Learning for Classification, Segmentation, Reconstruction, and Detection on Chest CT Scans. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 251-257, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.40. | |
dc.identifier.doi | 10.34658/9788366741928.40 | |
dc.identifier.isbn | 978-83-66741-92-8 | |
dc.identifier.uri | http://hdl.handle.net/11652/4816 | |
dc.identifier.uri | https://doi.org/10.34658/9788366741928.40 | |
dc.language.iso | en | en_EN |
dc.page.number | s. 251-257 | |
dc.publisher | Wydawnictwo Politechniki Łódzkiej | pl_PL |
dc.publisher | Lodz University of Technology Press | en_EN |
dc.relation.ispartof | Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Progress in Polish Artificial Intelligence Research 4, Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928. | |
dc.rights | Dla wszystkich w zakresie dozwolonego użytku | pl_PL |
dc.rights | Fair use condition | en_EN |
dc.rights.license | Licencja PŁ | pl_PL |
dc.rights.license | LUT License | en_EN |
dc.subject | multi-task learning | en_EN |
dc.subject | computed tomography | en_EN |
dc.subject | detection | en_EN |
dc.subject | uczenie się wielozadaniowe | pl_PL |
dc.subject | tomografia komputerowa | pl_PL |
dc.subject | detekcja | pl_PL |
dc.title | Multi-task Learning for Classification, Segmentation, Reconstruction, and Detection on Chest CT Scans | en_EN |
dc.type | Rozdział - monografia | pl_PL |
dc.type | Chapter - monograph | en_EN |
Pliki
Oryginalne pliki
1 - 1 z 1
Brak miniatury
- Nazwa:
- 40. Multi_task_learning_Hryniewska-Guzik_Biecek_2023.pdf
- Rozmiar:
- 656.64 KB
- Format:
- Adobe Portable Document Format
- Opis:
Licencja
1 - 1 z 1
Brak miniatury
- Nazwa:
- license.txt
- Rozmiar:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Opis: