Local Energy Redistribution Units for Space Dimensionality Reduction in Data Classification

Miniatura

Data

2023

Tytuł czasopisma

ISSN czasopisma

Tytuł tomu

Wydawca

Wydawnictwo Politechniki Łódzkiej
Lodz University of Technology Press

Abstrakt

In this paper, we present locally trained 2-input to 2-output neurons called Local Energy Redistribution Units (LERUs), which enable to transfer most of the input data energy to the selected output, and when organized into properly designed networks, allow for the energy accumulation in lower-indexed elements of output vectors. This property can be used to reduce the dimensionality of the input data space, resulting in a reduction in the number of weights and disk space needed to store neural network models. We test the effectiveness of the proposed approach experimentally in the task of data classification using the well-known MNIST dataset.

Opis

Słowa kluczowe

locally trained neurons, compression of neural networks, neurony wytrenowane lokalnie, kompresja sieci neuronowych

Cytowanie

Puchała D., Local Energy Redistribution Units for Space Dimensionality Reduction in Data Classification. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 355-360, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.56.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced