Spotting Advertisements from Above: Billboard Detection and Segmentation in UAV Imagery

dc.contributor.authorPtak, Bartosz
dc.contributor.authorDominiak, Jan
dc.contributor.authorKraft, Marek
dc.date.accessioned2023-09-21T08:47:32Z
dc.date.available2023-09-21T08:47:32Z
dc.date.issued2023
dc.description.abstractIn this work, deep-learning methods were researched for billboard detection in urban environments. Billboards are one of the adversarial visual pollutants occurring in cities, causing over-saturation of visual stimulation. Due to this, we develop an algorithm that helps in the analysis and management of urban space. We utilise near real-time object detection methods to detect and segment them on images registered by unmanned aerial vehicles (UAVs). Research is based on recent algorithms from the YOLO family with modified heads for the instance segmentation task. We gathered images and prepared hand-annotated labels for training and evaluation purposes of deep learning approaches. We reached the mAP@0.5 metric of 0.61 for detection and 0.60 for segmentation, enabling us to develop smart city applications.en_EN
dc.identifier.citationPtak B., Dominiak J., Kraft M., Spotting Advertisements from Above: Billboard Detection and Segmentation in UAV Imagery. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 67-72, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.9.
dc.identifier.doi10.34658/9788366741928.9
dc.identifier.isbn978-83-66741-92-8
dc.identifier.urihttp://hdl.handle.net/11652/4784
dc.identifier.urihttps://doi.org/10.34658/9788366741928.9
dc.language.isoenen_EN
dc.page.numbers. 67-72
dc.publisherWydawnictwo Politechniki Łódzkiejpl_PL
dc.publisherLodz University of Technology Pressen_EN
dc.relation.ispartofWojciechowski A. (Ed.), Lipiński P. (Ed.)., Progress in Polish Artificial Intelligence Research 4, Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.
dc.rightsDla wszystkich w zakresie dozwolonego użytkupl_PL
dc.rightsFair use conditionen_EN
dc.rights.licenseLicencja PŁpl_PL
dc.rights.licenseLUT Licenseen_EN
dc.subjectobject detectionen_EN
dc.subjectsegmentationen_EN
dc.subjectdeep learningen_EN
dc.subjectYOLOen_EN
dc.subjectUAVen_EN
dc.subjectdetekcja obiektówpl_PL
dc.subjectsegmentacjapl_PL
dc.subjectgłębokie uczeniepl_PL
dc.subjectYOLOpl_PL
dc.subjectUAVpl_PL
dc.titleSpotting Advertisements from Above: Billboard Detection and Segmentation in UAV Imageryen_EN
dc.typeRozdział - monografiapl_PL
dc.typeChapter - monographen_EN

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
9. Spott_advertis_Ptak_Dominiak_2023.pdf
Rozmiar:
2.11 MB
Format:
Adobe Portable Document Format
Opis:

Licencja

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
license.txt
Rozmiar:
1.71 KB
Format:
Item-specific license agreed upon to submission
Opis:

Kolekcje