Autoregressive Label-Conditioned Autoencoder for Controllable Image-To-Video Generation
dc.contributor.author | Kubicki, Kacper | |
dc.contributor.author | Ślot, Krzysztof | |
dc.date.accessioned | 2023-09-22T12:33:59Z | |
dc.date.available | 2023-09-22T12:33:59Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Generating videos from a single image with user-controlled attributes is a complex challenge in the field of computer vision, despite the significant advancements recently made in the field. This paper presents a novel approach to tackle this issue, leveraging a convolutional autoencoder with supervised principal component analysis and autoregressive inference step. The efficacy of the proposed method is evaluated on two datasets – MNIST handwritten-digits and time-lapse photos of the sky. Results from both quantitative and qualitative analyses show that the proposed approach produces high-quality videos of variable duration with user-defined attributes, while preserving the integrity of original image contents. | en_EN |
dc.identifier.citation | Kubicki K., Ślot K., Autoregressive Label-Conditioned Autoencoder for Controllable Image-To-Video Generation. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 307-311, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.49. | |
dc.identifier.doi | 10.34658/9788366741928.49 | |
dc.identifier.isbn | 978-83-66741-92-8 | |
dc.identifier.uri | http://hdl.handle.net/11652/4825 | |
dc.identifier.uri | https://doi.org/10.34658/9788366741928.49 | |
dc.language.iso | en | en_EN |
dc.page.number | s. 307-311 | |
dc.publisher | Wydawnictwo Politechniki Łódzkiej | pl_PL |
dc.publisher | Lodz University of Technology Press | en_EN |
dc.relation.ispartof | Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Progress in Polish Artificial Intelligence Research 4, Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928. | |
dc.rights | Dla wszystkich w zakresie dozwolonego użytku | pl_PL |
dc.rights | Fair use condition | en_EN |
dc.rights.license | Licencja PŁ | pl_PL |
dc.rights.license | LUT License | en_EN |
dc.subject | video generation | en_EN |
dc.subject | image-to-video | en_EN |
dc.subject | autoencoder | en_EN |
dc.subject | supervised PCA | en_EN |
dc.subject | generacja wideo | pl_PL |
dc.subject | przetwarzanie obrazu na wideo | pl_PL |
dc.subject | autoenkoder | pl_PL |
dc.subject | nadzorowana PCA | pl_PL |
dc.title | Autoregressive Label-Conditioned Autoencoder for Controllable Image-To-Video Generation | en_EN |
dc.type | Rozdział - monografia | pl_PL |
dc.type | Chapter - monograph | en_EN |
Pliki
Oryginalne pliki
1 - 1 z 1
Brak miniatury
- Nazwa:
- 49. Autoregressive_label_conditioned_Kubicki_Slot_2023.pdf
- Rozmiar:
- 1.46 MB
- Format:
- Adobe Portable Document Format
- Opis:
Licencja
1 - 1 z 1
Brak miniatury
- Nazwa:
- license.txt
- Rozmiar:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Opis: