Objective Hybrid Quality Assessment of Binary Images with the Use of Shallow Neural Networks

Miniatura

Data

2023

Tytuł czasopisma

ISSN czasopisma

Tytuł tomu

Wydawca

Wydawnictwo Politechniki Łódzkiej
Lodz University of Technology Press

Abstrakt

The state-of-the-art image quality assessment methods designed for binary images are not highly correlated with subjective evaluation results, therefore one of the efficient methods to improve their performance is the application of shallow neural networks. In such an approach each elementary metric is used as the input of the network and the network is trained with subjective quality scores used as the goal function. The obtained correlation with subjective scores depends not only on the number of elementary metrics and their choice but also on the training algorithm and the network’s structure as presented in the paper.

Opis

Słowa kluczowe

image quality assessment, binary images, neural networks, ocena jakości obrazu, obrazy binarne, sieci neuronowe

Cytowanie

Kopytek M., Okarma K., Objective Hybrid Quality Assessment of Binary Images with the Use of Shallow Neural Networks. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 43-48, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.5.

Kolekcje

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced