Can Anisotropic Friction Induce Chaos in a Horizontal Pendulum on a Rotating Disk?

dc.contributor.authorWijata, Adam
dc.date.accessioned2025-12-16T14:34:15Z
dc.date.issued2025
dc.description.abstractYes – anisotropic friction can induce chaotic motion in a horizontal pendulum on a rotating disk, under appropriate conditions. Although parameters required for chaotic motion are not common in engineering practice, i.e., a large anisotropy ratio and low bearing friction. In order to demonstrate this phenomenon, a dimensionless model of the system is developed, in which the pendulum’s tip slides on a rotating disk, and the anisotropic friction properties result from the disk surface structure. The model is explored numerically by time integration, complemented by bifurcation diagrams, Poincaré maps and estimates of Lyapunov characteristic exponents. The results demonstrate that when friction deviates from being co-linear with the sliding direction, the system undergoes a loss of static equilibria and follows limit cycles. As system parameters vary, these cycles undergo period-doubling bifurcations and evolve into chaotic attractors. The emergence of chaos is robust within specific, bounded regions of the system’s parameter space, but is sensitive to additional energy dissipation, i.e., adding moderate viscous damping in the pendulum joint suppresses chaotic dynamics and restores simpler periodic behavior. These findings establish anisotropic friction as a mechanism capable of generating rich nonlinear dynamics in an otherwise simple mechanical setup. The outcome of this study has practical implications, demonstrating that surface anisotropy can be regarded as a controllable factor. This can be utilized to produce complex responses which are desirable, for instance, in energy harvesting. On the other hand, friction anisotropy should be minimized where predictable, stable performance is required.en_EN
dc.identifier.doi10.34658/9788367934886.w1.4.121-145
dc.identifier.urihttp://hdl.handle.net/11652/5773
dc.identifier.urihttps://doi.org/10.34658/9788367934886.w1.4.121-145
dc.language.isoen
dc.page.number121-145
dc.publisherWydawnictwo Politechniki Łódzkiejpl_PL
dc.publisherLodz University of Technology Pressen_EN
dc.relation.ispartofPerlikowski, Przemysław et al. (red. nauk.), Monografia interdyscyplinarna. Badania i innowacje w naukach inżynieryjno-technicznych, ścisłych i przyrodniczych oraz społecznych. Matter - Process - Innovation, Seria: Monografia Interdyscyplinarna Politechniki Łódzkiej, Nr 2609, Wydawnictwo Politechniki Łódzkiej, Łódź 2025, ISBN: 978-83-67934-88-6, DOI: 10.34658/9788367934886pl_PL
dc.rightsDla wszystkich w zakresie dozwolonego użytkupl_PL
dc.rightsFair use conditionen_EN
dc.rights.licenseLicencja PŁpl_PL
dc.rights.licenseLUT Licenseen_EN
dc.subjectanisotropic frictionen_EN
dc.subjectpendulumen_EN
dc.subjectchaosen_EN
dc.subjectbifurcationen_EN
dc.subjectrotating disken_EN
dc.titleCan Anisotropic Friction Induce Chaos in a Horizontal Pendulum on a Rotating Disk?
dc.typemonografia PŁ - rozdziałpl_PL
dc.typeTUL monograph - chapteren_EN

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Ładowanie...
Miniatura
Nazwa:
W1.4.121-145_Adam_Wijata_1.pdf
Rozmiar:
2.28 MB
Format:
Adobe Portable Document Format

Kolekcje