Aaron Earned an Iron Urn: Speech-to-IPA Models Improve Diagnostic of Pronunciation

Miniatura

Data

2023

Tytuł czasopisma

ISSN czasopisma

Tytuł tomu

Wydawca

Wydawnictwo Politechniki Łódzkiej
Lodz University of Technology Press

Abstrakt

Learning the proper pronunciation is one of the key aspects of foreign language acquisition. Assessment of the correctness of pronunciation requires the involvement of expert phoneticians and linguists, severely limiting the scalability of learning solutions. However, the recent adaptation of the Transformer architecture to the audio domain opens the way for automatic model-based assessment of pronunciation. In this paper, we present the pronunciation diagnostic tool developed at PUT and we experimentally evaluate the correlation between expert human assessment and automatic model assessment. By combining the Wav2Vec model and the IPA representation, we prove that pronunciation assessment can be performed automatically with high precision.

Opis

Słowa kluczowe

Wav2Vec, IPA, pronunciation diagnostic, ASR, Wav2Vec, IPA, diagnostyka wymowy, ASR

Cytowanie

Olejnik F., Stachowiak R., Krysińska I., Morzy M., Aaron Earned an Iron Urn: Speech-to-IPA Models Improve Diagnostic of Pronunciation. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 273-279, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.43.

Kolekcje

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced