Classification of Objects in a Point Cloud using Neural Networks

dc.contributor.authorDaszuta, Marcin
dc.contributor.authorNapieralska-Juszczak, Ewa
dc.date.accessioned2021-07-20T07:58:17Z
dc.date.available2021-07-20T07:58:17Z
dc.date.issued2019
dc.description.abstract3-dimensional scans captured in shape of point clouds are widely used in many dierent areas. Every such area use dierent kinds of sensors to ac-quire point clouds and do the analysis of the data but each of those needs some preanalysis to be done. One of the most important is segmentation and classification of points into types of objects. Such information considerably widens possibilities of usage for further purposes. There are many classifiers and many features based on which labeling can be done. In this paper few most commonly used approaches were chosen to check the influence of neighboring points acquisition on classification process. Results proof significant relation between those two steps of point cloud analysis. Visualization of analyzed point cloud also shown that precision of predictions not always comes with better visibility of certain types of objects. Additionally, color-less analysis of geometrical features seems to be promising way for further research.en_EN
dc.identifier.citationDaszuta, M., & Napieralska-Juszczak, E. (2019). Classification of Objects in a Point Cloud using Neural Networks. Journal of Applied Computer Science, 27(2), 7- 16. https://doi.org/10.34658/jacs.2019.27.2.7-16
dc.identifier.doihttps://doi.org/10.34658/jacs.2019.27.2.7-16
dc.identifier.doi10.34658/jacs.2019.27.2.7-16
dc.identifier.issn1507-0360
dc.identifier.urihttp://hdl.handle.net/11652/3903
dc.identifier.urihttps://doi.org/10.34658/jacs.2019.27.2.7-16
dc.language.isoenen_EN
dc.page.numbers. 7-16
dc.publisherWydawnictwo Politechniki Łódzkiejpl_PL
dc.publisherLodz University of Technology Pressen_EN
dc.relation.ispartofJournal of Applied Computer Science, Vol. 27, No. 2, Wydawnictwo Politechniki Łódzkiej, Łódź 2019, ISSN 1507-0360.
dc.rightsFair use conditionen_EN
dc.rightsDla wszystkich w zakresie dozwolonego użytkupl_PL
dc.rights.licenseLUT Licenseen_EN
dc.rights.licenseLicencja PŁpl_PL
dc.subjectpoint cloud classificationen_EN
dc.subjectVoxel Partitioningen_EN
dc.subjectKNNRen_EN
dc.subjectK-nearest neighbors in rangeen_EN
dc.subjectRandom Foresten_EN
dc.subjectklasyfikacja chmury punktówpl_PL
dc.subjectpartycjonowanie wokselipl_PL
dc.subjectalgorytm k najbliższych sąsiadówpl_PL
dc.subjectlosowy laspl_PL
dc.titleClassification of Objects in a Point Cloud using Neural Networksen_EN
dc.typeArtykułpl_PL
dc.typeArticleen_EN

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
1_Class_objec_Daszuta_2019.pdf
Rozmiar:
747.24 KB
Format:
Adobe Portable Document Format
Opis:

Licencja

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
license.txt
Rozmiar:
1.71 KB
Format:
Item-specific license agreed upon to submission
Opis: