Identification of the model parameters based on the ambiguous branches of resonance response curves
Data
2021
Tytuł czasopisma
ISSN czasopisma
Tytuł tomu
Wydawca
Wydawnictwo Politechniki Łódzkiej
Politechnika Łódzka. Wydział Mechaniczny. Katedra Automatyki, Biomechaniki i Mechatroniki.
Lodz University of Technology Press
Lodz University of Technology. Faculty of Mechanical Engineering. Department of Automation, Biomechanics and Mechatronics.
Politechnika Łódzka. Wydział Mechaniczny. Katedra Automatyki, Biomechaniki i Mechatroniki.
Lodz University of Technology Press
Lodz University of Technology. Faculty of Mechanical Engineering. Department of Automation, Biomechanics and Mechatronics.
Abstrakt
A concept of the method of determining the parameters describing the damping and
the nonlinearity, which can be of physical or geometrical nature, is presented in the paper. The
main idea is explained regarding mechanical systems with one degree of freedom, however,
the method can be also employed to identification for systems with two DoF provided that the
couplings are weak and the resonances do not occur simultaneously. The analysis of stationary
resonance states can be reduced only then to the third-degree equation, which is a necessary
condition for the applicability of this method. Numerical simulations, which are carried out,
confirm the usefulness and accuracy of the method.
Opis
Słowa kluczowe
Duffing’s equation, multiple scales method, main resonance, resonance response curves, równanie Duffinga, metoda wieloskalowa, rezonans główny, krzywe odpowiedzi rezonansowej
Cytowanie
Sypniewska-Kamińska G., Awrejcewicz J., Identification of the model parameters based on the ambiguous branches of resonance response curves. W: DSTA-2021 Conference Books – Abstracts (16th International Conference : Dynamical Systems Theory and Applications DSTA 2021 ABSTRACTS), Awrejcewicz J. (red.), Kaźmierczak M. (red.), Olejnik P. (red.), Mrozowski J. (red.), Wydawnictwo Politechniki Łódzkiej ; Politechnika Łódzka. Wydział Mechaniczny. Katedra Automatyki, Biomechaniki i Mechatroniki, Łódź 2021, s. 258-259, ISBN 978-83-66741-20-1.