Packet switching networks traffic prediction based on radial basis function neural network

dc.contributor.authorZaleski, Arkadiusz
dc.contributor.authorKacprzak, Tomasz
dc.date.accessioned2015-06-03T11:15:59Z
dc.date.available2015-06-03T11:15:59Z
dc.date.issued2010
dc.description.abstractNew multimedia applications require Quality of Service support, which is still not successfully implemented in current packet-switched networks implementations. This paper presents a concept of neural network predictor, suitable for prediction of short-term values of traffic volume generated by end user. The architecture is Radial Basis Function neural network, optimized with respect to a number of neurons. Testing mode of the neural network is very fast, what enables application of this tool in nodes of telecommunication network. This would help to warn a network management system on early symptoms of congestion expected in the near future and avoid the network overload.en_EN
dc.formatapplication/pdf
dc.identifier.citationJournal of Applied Computer Science., 2010 Vol.18 nr 2 s.91-101 sum.
dc.identifier.issn1507-0360
dc.identifier.other0000028431
dc.identifier.urihttp://hdl.handle.net/11652/449
dc.language.isoen
dc.publisherWydawnictwo Politechniki Łódzkiejpl_PL
dc.publisherLodz University of Technology. Pressen_EN
dc.relation.ispartofseriesJournal of Applied Computer Science., 2010 Vol.18 nr 2en_EN
dc.titlePacket switching networks traffic prediction based on radial basis function neural network
dc.typeArtykuł

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
Packet_switching_networks_Zaleski_2010.pdf
Rozmiar:
162.75 KB
Format:
Adobe Portable Document Format