Machine Learning for Water Leak Detection and Localization in the WaterPrime Project
dc.contributor.author | Głomb, Przemysław | |
dc.contributor.author | Romaszewski, Michał | |
dc.contributor.author | Cholewa, Michał | |
dc.contributor.author | Koral, Wojciech | |
dc.contributor.author | Madej, Andrzej | |
dc.contributor.author | Skrabski, Maciej | |
dc.contributor.author | Kołodziej, Katarzyna | |
dc.date.accessioned | 2023-09-22T06:54:21Z | |
dc.date.available | 2023-09-22T06:54:21Z | |
dc.date.issued | 2023 | |
dc.description.abstract | We present an integrated approach for water leak detection and localization developed for the WaterPrime project. Proposed method is based on telemetric monitoring of a District Metered Areas (DMA), using first an application of anomaly detection on sensors’ data and then building a ‘digital twin’ of a DMA state using a combination of hydraulic simulator and machine learning algorithms. This approach leads to reduction of time of leak location estimation from the order of weeks/months to days, and provides a significant reduction in quantity of water lost, as was preliminary verified in two waterworks associated with the project. | en_EN |
dc.identifier.citation | Głomb P., Romaszewski M., Cholewa M., Koral W., Madej A., Skrabski M., Kołodziej K., Machine Learning for Water Leak Detection and Localization in the WaterPrime Project. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 193-194, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.30. | |
dc.identifier.doi | 10.34658/9788366741928.30 | |
dc.identifier.isbn | 978-83-66741-92-8 | |
dc.identifier.uri | http://hdl.handle.net/11652/4806 | |
dc.identifier.uri | https://doi.org/10.34658/9788366741928.30 | |
dc.language.iso | en | en_EN |
dc.page.number | s. 193-194 | |
dc.publisher | Wydawnictwo Politechniki Łódzkiej | pl_PL |
dc.publisher | Lodz University of Technology Press | en_EN |
dc.relation.ispartof | Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Progress in Polish Artificial Intelligence Research 4, Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928. | |
dc.rights | Dla wszystkich w zakresie dozwolonego użytku | pl_PL |
dc.rights | Fair use condition | en_EN |
dc.rights.license | Licencja PŁ | pl_PL |
dc.rights.license | LUT License | en_EN |
dc.subject | leak detection | en_EN |
dc.subject | leak localization | en_EN |
dc.subject | anomaly detection in time series | en_EN |
dc.subject | machine learning of a digital twin | en_EN |
dc.subject | detekcja wycieków | pl_PL |
dc.subject | lokalizacja wycieków | pl_PL |
dc.subject | wykrywanie anomalii w szeregach czasowych | pl_PL |
dc.subject | uczenie maszynowe cyfrowego bliźniaka | pl_PL |
dc.title | Machine Learning for Water Leak Detection and Localization in the WaterPrime Project | en_EN |
dc.type | Rozdział - monografia | pl_PL |
dc.type | Chapter - monograph | en_EN |
Pliki
Oryginalne pliki
1 - 1 z 1
Brak miniatury
- Nazwa:
- 30. Machine_learning_water_Glomb_Romaszewski_2023.pdf
- Rozmiar:
- 138.87 KB
- Format:
- Adobe Portable Document Format
- Opis:
Licencja
1 - 1 z 1
Brak miniatury
- Nazwa:
- license.txt
- Rozmiar:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Opis: