Increasing Skin Lesions Classification Rates using Convolutional Neural Networks with Invariant Dataset Augmentation and the Three-Point Checklist of Dermoscopy

dc.contributor.authorMilczarski, Piotr
dc.contributor.authorBorowski, Norbert
dc.contributor.authorBeczkowski, Michał
dc.date.accessioned2023-09-25T05:59:22Z
dc.date.available2023-09-25T05:59:22Z
dc.date.issued2023
dc.description.abstractIn the paper, we show how to tackle the problem of lack of the rotation invariance in CNN networks using the authors’ Invariant Dataset Augmentation (IDA) method. The IDA method allows to increase the classification rates taking into account as an example the classification of the skin lesions using a small image set. In order to solve the problem of the lack of rotation invariance, IDA method was used and the dataset was increased in an eightfold and invariant way. In the research, we applied the IDA methods and compared the results of VGG19, XN and Inception-ResNetv2 CNN networks in three skin lesions features classification defined by wellknown dermoscopic criterions e.g. the Three-Point Checklist of Dermoscopy or the Seven-Point Checklist. Due to Invariant Dataset Augmentation, the classification rate parameters like true positive rate by almost 20%, false positive rate as well as the F1 score and Matthews correlation coefficient have been significantly increased opposite to type II error that has significantly decreased. In the paper, the confusion matrix parameters result in: 98-100% accuracy, 98-100% true positive rate, 0.0-2.3% false positive rate, tests F1=0.95 and MCC=0.95. That general approach can provide higher results while using CNN networks in other applications.en_EN
dc.identifier.citationMilczarski P., Borowski N., Beczkowski M., Increasing Skin Lesions Classification Rates using Convolutional Neural Networks with Invariant Dataset Augmentation and the Three-Point Checklist of Dermoscopy. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 325-334, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.52.
dc.identifier.doi10.34658/9788366741928.52
dc.identifier.isbn978-83-66741-92-8
dc.identifier.urihttp://hdl.handle.net/11652/4828
dc.identifier.urihttps://doi.org/10.34658/9788366741928.52
dc.language.isoenen_EN
dc.page.numbers. 325-334
dc.publisherWydawnictwo Politechniki Łódzkiejpl_PL
dc.publisherLodz University of Technology Pressen_EN
dc.relation.ispartofWojciechowski A. (Ed.), Lipiński P. (Ed.)., Progress in Polish Artificial Intelligence Research 4, Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.
dc.rightsDla wszystkich w zakresie dozwolonego użytkupl_PL
dc.rightsFair use conditionen_EN
dc.rights.licenseLicencja PŁpl_PL
dc.rights.licenseLUT Licenseen_EN
dc.subjectinvariant dataset augmentationen_EN
dc.subjectdermoscopic imagesen_EN
dc.subjectblue-white veilen_EN
dc.subjectlesion symmetryen_EN
dc.subjectconvolutional neural networksen_EN
dc.subjectartificial intelligenceen_EN
dc.subjectinwariantne powiększanie zbioru danychpl_PL
dc.subjectobrazy dermoskopowepl_PL
dc.subjectniebiesko-biała zasłonapl_PL
dc.subjectsymetria zmianpl_PL
dc.subjectsplotowe sieci neuronowepl_PL
dc.subjectsztuczna inteligencjapl_PL
dc.titleIncreasing Skin Lesions Classification Rates using Convolutional Neural Networks with Invariant Dataset Augmentation and the Three-Point Checklist of Dermoscopyen_EN
dc.typeRozdział - monografiapl_PL
dc.typeChapter - monographen_EN

Pliki

Oryginalne pliki

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
52. Increasing_skin_lesions_Mielczarski_Borowski_2023.pdf
Rozmiar:
1.5 MB
Format:
Adobe Portable Document Format
Opis:

Licencja

Teraz wyświetlane 1 - 1 z 1
Brak miniatury
Nazwa:
license.txt
Rozmiar:
1.71 KB
Format:
Item-specific license agreed upon to submission
Opis: