Wydział Mechaniczny / Faculty of Mechanical Engineering / W1

Stały URI zbioruhttp://hdl.handle.net/11652/1

Przeglądaj

Wyniki wyszukiwania

Teraz wyświetlane 1 - 2 z 2
  • Pozycja
    Modelowanie procesu zniszczenia ściskanych słupów kompozytowych z wykorzystaniem naprężeniowych kryteriów zniszczenia.
    (Wydział Mechaniczny. Katedra Wytrzymałości Materiałów i Konstrukcji. Politechnika Łódzka, 2015) Dębski, H.; Kubiak, T.
  • Pozycja
    Hybrid, finite element-artificial neural network model for composite materials.
    (Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej, 2004) Lefik, Marek
    An application of Artificial Neural Networks for a definition of the effective constitutive law for a composite is described in the paper. First, a classical homogenisation procedure is directly interpreted with a use of this numerical tool. Next, a self-learning Finite Element code (FE with ANN inside) is used in the case when the effective constitutive law is deduced from a numerical experiment (substituting here a purely phenomenological approach). The new contribution to the classical self-learning procedure consists of its adaptation to a case of a non-monotonic loading (non-to-one load-deformation curve). This new ability of the method is principally due to the incremental form of the constitutive equation and the respective scheme of the neural network structure. Also an organisation of a constitutive data-base containing learning patterns is suitably modified. It is shown by examples that the training process is very quick. The error of this method is smaller, comparing to other schemes of data acquisition.