Wydział Technologii Materiałowych i Wzornictwa Tekstyliów / Faculty of Material Technologies and Textile Design / W4

Stały URI zbioruhttp://hdl.handle.net/11652/4

Przeglądaj

Wyniki wyszukiwania

Teraz wyświetlane 1 - 2 z 2
  • Pozycja
    New Method for Preparation of Biodegradable Medical Materials Characterised by Highly Developed Porous Structures
    (Instytut Biopolimerów i Włókien Chemicznych (IBWCh) , Łódź, Polska, 2014) Kowalska, Stanisława; Krucińska, Izabella; Komisarczyk, Agnieszka; Żywicka, Bogusława
    This study addresses the preparation of biodegradable and highly porous materials with the chemical purity required for medical materials. The solution method for producing porous structures with table salt was modified through the application of plasticisers in the technological process. In this paper the term medical materials includes dressing and implantable materials as well as scaffolds for tissue culture. A new method is proposed using polymers such as poly(D,L-lactide) and dibutyrylchitin to produce porous structures with enhanced absorption properties.
  • Pozycja
    Biomechanical Studies of Novel Hernia Meshes with Enhanced Surface Behaviour
    (Instytut Biopolimerów i Włókien Chemicznych (IBWCh) , Łódź, Polska, 2014) Struszczyk, Marcin H.; Komisarczyk, Agnieszka; Krucińska, Izabella; Gutowska, Agnieszka; Pałys, Beata; Ciechańska, Danuta
    Research on hernia implants, especially less-invasive implantation techniques, is an important focus of study around the world. Practitioners require that these elaborate structures, which are primarily designed using textile technology, possess biomimetic behaviour to significantly reduce post-implantation complications. Novel textile hernia implants are designed with surface modifications that prevent prosthesis migration after implantation. The specialised structural design and enhanced prosthesis surface with stitched loops enables increased surface contact with the fascia, which improves the integration of connective tissue with the prosthesis without overgrowth (thick scar formation). The main intra-operative clinical benefit of the novel implant is its potential utility in suture-less techniques. The aim of this study was to compare novel hernia implant designs to clinically proven, commercially available knitted hernia meshes in vitro. TEMA MOTION 3.5 software was used to analyse motion and estimate the tendency of the non-fixed implants to remain in a stable position at the sublay in a simulated hydrodynamic model of the abdominal wall hernia system.The mechanical resistance of the implant against simulated maximal intra-abdominal pressure, the height of the simulated abdominal wall in the reconstruction region and the curvature of the reconstructions were determined and compared with results obtained with commercial hernia meshes of low surface mass that differ in structure, stiffness and thickness.