Artykuły (WTMiWT)

Stały URI dla kolekcjihttp://hdl.handle.net/11652/180

Przeglądaj

collection.search.results.head

Teraz wyświetlane 1 - 3 z 3
  • Pozycja
    In-Compost Biodegradation of PLA Nonwovens
    (Instytut Biopolimerów i Włókien Chemicznych (IBWCh) , Łódź, Polska, 2014) Gutowska, Agnieszka; Jóźwicka, Jolanta; Sobczak, Serafina; Tomaszewski, Wacław; Sulak, Konrad; Miros, Patrycja; Owczarek, Monika; Szalczyńska, Magdalena; Ciechańska, Danuta; Krucińska, Izabella
    Presented in this work are the results of an investigation into the biodegradation of selected nonwoven materials made of commercial poly[(DL)-lactide] – PLA 6252D supplied by Nature Works® LLC, USA. The biodegradation was examined under laboratory conditions, simulating composting by the mass-loss method at constant process parameters: temperature t = 58 ± 2 °C, pH 7 and inoculum humidity W = 52.6%. The nonwovens examined, with a surface density of about 60 g/m2, revealed a varied crystallinity degree in the range of 10.4 - 35.6% and fibre diameter of 8.2 - 10.9 μm. The nonwovens were formed by the spun-bond method from a melt at 211 - 213 °C on a laboratory stand. The commercial PLA 6252D was also examined. The polymer PLA 6252D and nonwoven materials made thereof are entirely biodegradable in the research environment applied, and after 16 weeks of biodegradation weight loss in the materials reaches 100%.
  • Pozycja
    Biomechanical Studies of Novel Hernia Meshes with Enhanced Surface Behaviour
    (Instytut Biopolimerów i Włókien Chemicznych (IBWCh) , Łódź, Polska, 2014) Struszczyk, Marcin H.; Komisarczyk, Agnieszka; Krucińska, Izabella; Gutowska, Agnieszka; Pałys, Beata; Ciechańska, Danuta
    Research on hernia implants, especially less-invasive implantation techniques, is an important focus of study around the world. Practitioners require that these elaborate structures, which are primarily designed using textile technology, possess biomimetic behaviour to significantly reduce post-implantation complications. Novel textile hernia implants are designed with surface modifications that prevent prosthesis migration after implantation. The specialised structural design and enhanced prosthesis surface with stitched loops enables increased surface contact with the fascia, which improves the integration of connective tissue with the prosthesis without overgrowth (thick scar formation). The main intra-operative clinical benefit of the novel implant is its potential utility in suture-less techniques. The aim of this study was to compare novel hernia implant designs to clinically proven, commercially available knitted hernia meshes in vitro. TEMA MOTION 3.5 software was used to analyse motion and estimate the tendency of the non-fixed implants to remain in a stable position at the sublay in a simulated hydrodynamic model of the abdominal wall hernia system.The mechanical resistance of the implant against simulated maximal intra-abdominal pressure, the height of the simulated abdominal wall in the reconstruction region and the curvature of the reconstructions were determined and compared with results obtained with commercial hernia meshes of low surface mass that differ in structure, stiffness and thickness.
  • Pozycja
    Accelerated Ageing of Implantable, Ultra-Light, Knitted Medical Devices Modified by Low-Temperature Plasma Treatment - Part 2. Effect on chemical Purity
    (Instytut Biopolimerów i Włókien Chemicznych (IBWCh) , Łódź, Polska, 2014) Jóźwicka, Jolanta; Gzyra-Jagieła, Karolina; Gutowska, Agnieszka; Struszczyk, Marcin H.; Kostanek, Krzysztof; Cichecka, Magdalena; Wilbik-Hałgas, Bożena; Kowalski, Krzysztof; Kopias, Kazimierz; Ciechańska, Danuta; Krucińska, Izabella
    The impact of simulated storage conditions (accelerated ageing) for the chemical purity of innovative ultra-light textile implants (knitted) designed for use in urogynaecology and general surgery (procedures in the treatment of female incontinence, in hernia treatment and vagina plastic surgery) was estimated. The chemical purity of the knitted implants designed: untreated and with low-temperature plasma surface treatment in the presence of the fluoroorganic compounds was estimated. The acceptability of the risk related to the impact of storage conditions on the chemical purity of the implant products was simulated. The examination was based on Standard PN-EN ISO 10993-18:2008: “Biological evaluation of medical devices - Part 18: Chemical characterisation of materials” and was assessed in accordance with Polish and European standards.