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Abstract. The homogenization procedure is applied to strain analysis and optimal 

design of a Functionally Graded (FG) rod in the case when the inclusion size is 

essentially less than a distance between them. The method is illustrated using an 

example of the rod longitudinal strain. We considered separately the cases of FG 

inclusion sizes and FG steps between inclusions. Two particular problems of optimal 

design are discussed in some details. 

1. Introduction

A fundamental approach allows deducing the macro-scale laws and the constitutive relation by 

properly homogenization over the micro-scale is known as the homogenization method [1-9]. This 

method also used to modeling and simulating mechanical behavior of FG Materials (FGM) and FG 

Structures (FGS) [10-15]. FGMs are composites consisting of two different materials with a gradient 

composition. For homogenization method coefficients of regular composites state equations are 

usually [1-4] approximated by the first terms of their Fourier series (Fig. 1). 

Figure 1.   Example of equation coefficient for regular composites. 

Similarly [10-15] can be approximated the coefficients of FGSs state equations with FG inclusion 

sizes (Fig. 2) and FG step between the inclusions (Fig. 3). 

Figure 2.   Example of equations coefficient for composite with FG inclusion sizes. 
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Figure 3.   Example of equation coefficient for composite with FG steps between inclusions. 

However, the truncated Fourier parts even for a small number of terms relatively good 

approximate the coefficients of the state equations for large concentration of inclusions (fibers, cells, 

etc.), when the distance  between inclusions have been the same order as their typical size. For small 

concentration, when the distance between inclusions is essentially larger than their size, the state 

equations coefficients are approximated by impulsive periodic function (see, for instance, Fig. 4). In 

this case usual homogenization procedure may meet some problems to be directly applied.  

 

Figure 4.   Example of coefficient for composites with small inclusion concentration. 

Therefore, for a small concentration of inclusions it is recommended to use the further presented 

variant of homogenization method, where used small size of the inclusions with respect to the 

distance between them for asymptotic procedure. Modifications of this approach for FGS with small 

inclusion concentrations are proposed.  

The applied method is illustrated using a relatively simple problem, i.e. a rod with a longitudinal 

strain. Rod diameter is taken commensurable with inclusions dimension. 

2. FG inclusion sizes 

FG properties can be achieved, for instance, with respect to different inclusion sizes. Let us 

analyse an influence of different sizes of inclusions on the longitudinal rod stiffness, keeping constant 

the distance between inclusions (Fig. 5).  We define changes of the inclusion dimensions by a  

function ( )V V x . 

42



 

Figure 5.   Rod with FG inclusions. 

We approximate inclusions (Fig. 5) by concentrated elastic elements (Fig. 6), where stiffness 

1( )k z  characterizes the inclusions influence. Observe that for composites with regular structure in the 

analogous models of two-component rod are applied (see [16-18]). 

 

Figure 6.   Two-component rod with concentrated elastic elements.  

Obviously, a number of inclusions n is large, and hence the distance 1i il z z    between them is 

much less than the rod length  L,  l<<L. Therefore, in order to investigate the longitudinal deformation 

of the two components rod (Fig. 6), one may apply the following variant of the homogenization 

procedure. 

Equilibrium equation of the rod part between the inclusions has the following form 

2

2
,

d u
q

dx
  (1)  

where / ;x z l  / ;u v l  v is the longitudinal displacement; 

0

( )
;

p x
q

lk
  ( )p x   is the applied load; 

k0=E0F; E0 is the Young modulus matrix; F is the cross-sections area.  

Compatibility conditions regarding the i-th elastic cross-sections are as follow 
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3. Homogenization procedure 

Owing to the multiscale homogenization approach, let us introduce the fast variable ξ 

/ ,x    (3)    

where ε=1/n<<1. 

We treat the variables x and ξ as independent ones, and the differential operator occurred in (1), 

(2) has the following form 

1 .
d

dx x




 
 
 

  (4) 

Displacement u can be presented in the following form  

2 3

0 1 2( ) ( , ) ( , ) ...,u u x u x u x         (5) 

where us (s=1,2,...) is periodic with respect to ξ. 

Substituting formulas (4), (5) into equation (1) and condition (2), and carrying out the splitting 

with respect to ε, the following equations are obtained 
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 
   (6) 

1 0 1( ) ( ) ,nu u      (7) 
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We assumed 
1 ~1k 

  while deriving formula (8).  

Integrating (6) with regard to ξ and defining the integration constant via condition (7), we get 

2

1 0

2
.

2

u d u n
q

dx




   
    

   
   (9) 

Substituting formula (9) into condition (8), the following homogenized equation describing the 

longitudinal displacement of the two-component rod is obtained 

2

0
02

( ) .
d u

k x u q
dx

     (10) 

Micromechanical effects are described by functions us (s=1,2,...).  
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4. Inverse problem 

The main advantage of the proposed approach is that it allows efficiently solving the problems of 

optimization, i.e. problems devoted to determination of optimal characteristics of the internal material 

structure protecting the given structure properties. In the studied case of the FG amplitudes, the target 

characteristic is the function V=V(x) governing a rule of the inclusion dimensions change. 

As an example we consider the problem of determination of the function V(x) protecting the 

larger longitudinal stiffness for a given load q(x). It is convenient to take rather the function k(x) as 

the control function instead of the function V(x).  

Without lose of generality let us take the boundary conditions in the following form 

0
0(0) 0, 0.

x n

du
u

dx 

    (11) 

In order to measure the rod stiffness properties we take energy of the elastic deformations and 

use zero order approximation of the displacement (10). Then, we define a minimum of the following 

functional 

0

0

min .

n

kI qu dx    (12) 

One can introduce the following isoperimetric condition which guarantees a constant total 

inclusion volume 

1

( ) .
n

i

i

k x C const


    (13) 

Condition (13) can be transformed to the isoperimetric form owing to application of an Euler-

Maclaurin formula [19] 

 
1 0

1 1 1
( ) ( (0) ( )) ( '(0) '( )) ( ''(0) ''( )) ... .

2 12 720

Ln

i

i

k x k x dx k k L k k L k k L


          

For large number of inclusions 1n  and smooth function '( ) 1,k x  we can neglect non-

integral terms 

 
0

( ) .

n

k x dx c    (14) 

In practice, the inclusion sizes meet the technological constrains. Hence, next constraint for the 

target function is required 
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min max( ) .k k x k    (15) 

Constraint (15) is satisfied through introduction of the following new control function  (x) [20]: 

sin ,k       (16) 

where: min max0.5( ),k k    min max0.5( ).k k     

Obtaining of the function ( )x  requires solution to the following inverse problem (10)-(16): 

0

0

min ,

n

I qu dx     (17) 

1

0

sin ,

n

I dx c     (18) 

2

0
02

( sin ) ,
d u

u q
dx

        (19) 

0
0(0) 0, 0.

x n

du
u

dx 

 
  

 
  (20) 

Defining first variations of integrals (17), (18), and a variation equation corresponding to (19) 

with the boundary conditions (20), one obtains 

0 1

0 0

, cos ,

n n

I q u dx I dx          (21) 

2

0
0 02
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u u
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
            (22) 

0
0(0) 0, 0.

x n

d u
u

dx






 
  

 
  (23) 

The variation of Lagrange functional follows 

2

0
1 0 02

0

( sin ) cos 0,

n
d u

I I v u u dx
dx


        

 
      

 
   (24) 

where   denotes the Lagrange multiplier, and v  is the conjugated variable.  
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Conjugated variable v  being defined through the condition minimizing functional (17) should 

not contain the variation 0w . For this purpose, we integrate by parts the first term of the integrand 

two times taking into account conditions (23). Non-integral terms are equal zero if the following 

boundary conditions are applied to the conjugated variable 

(0) 0, 0.
x n

dv
v

dx 

 
  

 
  (25) 

Finally, equation (24) takes the following form 

2

0 02

0

( sin ) cos ( ) 0.

n
d v

v q u vu dx
dx

       
  

        
  

   (26) 

In order to keep variation J  independent on 0 ,u  the following equation should be satisfied 

2

2
( sin ) 0,

d v
v q

dx
        (27) 

and the following optimality condition takes place 

0cos ( ) 0.vu      (28) 

Comparison of the boundary condition (22), (23) and (25), (27) yields 

0.v u     (29) 

Taking into account equation (29), optimality condition is result to the following form 

2

0cos ( ) 0.u     (30) 

As it has been pointed out in references [10-15], the occurrence of singular points belongs to 

typical problems, while solving the problems of optimization of FGS. If one is looking for the control 

function ( )x  as continuous one, then it is impossible to satisfy the boundary condition (20) for 

0.x   Therefore, we assume the control function ( )x  in  the form of piece-wise continuous 

function, which in the 1(0, )x  satisfies the following condition 

cos 0,    (31) 

and on 1( , )x L  we have  
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2

0 0.u     (32) 

One gets a co-ordinate of the point х1 from continuity condition in this point of both the function 

u0 and its derivative u0x (these conditions are yielded by the external Weierstrass-Erdmann relations 

[21]): 

1 1 1 1

0 0
0 0

0 0 0 0
lim lim , lim lim .

x x x x x x x x

du du
u u

dx dx       
     (33) 

The conditions (33), taking into account relations (31), take the following form 

01 1( ) ,u x      (34) 

1

01 0,
x x

du

dx 

 
 

 
   (35) 

where 01u  denotes displacement in the interval 1(0, ).x  Relations (16), (19), (31) allow to derive the 

following equation 

2

01
min 012

,
d u

k u q
dx

    (36) 

with BCs (11), (35). Assuming that 01u  is known, conditions (34) allow describing 1x  via .  

Substituting conditions (32) into equation (19), we find a formula for sin  in the interval 1( , ).x L  

Then, taking into account formula (18), the following optimal control function is defined 

min 1

1

, (0, ),

, ( , ).

k x x

k q
x x L






 
 


  (37) 

The Lagrange constant   is found from an isoperimetric condition (14), which takes the 

following form    

1

min 1( ).

n

x

qdx c k x                       (38) 

5. Example of amplitude optimization 

In order to illustrate the proposed method, we consider the problems (10)-(15) for linearly 

distributed load, i.e. 
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, .q x const                                        (39) 

Assume that the minimal size of inclusions is equal to zero, i.e. 

min 0.k     (40) 

Formulas (39), (40), taking into account the boundary conditions (36), (11), (35), yield 

3 2

1
01 .

6 2

x x
u x

 
  

 
  (41) 

Equation (34) gives 

3

1 .
3

x


     (42) 

Formula (38) taking into account (39), (40), (42), implies the following equation to find 1 :x  

3 3 2

1 12 3 3 0.cx x L     (43) 

Observe, that equation (43) does not include an intensity of the load ,  i.e., the variable 1x  

depends only on the applied load character, which is typical for the linear statement formulation. We 

take the following parameters in order to carry out the numerical computations 

2 3100, 10 10 .n c   (44) 

It should be emphasized that for the chosen parameters equation (43) uniquely defines 1,x  since 

among any three roots of the equation, only one is positive. 

The function 1x  versus c is reported in Figure 7. 
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Figure 7.   The function 1x  versus c ( 1x  denotes a boundary area without inclusions). 

Finally, (37) yields the optimal control function  

1

13

1

0, (0, ),

3
, ( , ).

x x

k x
x x n

x






 




  (45) 

Let us estimate the efficiency of the proposed optimization. For this purpose we compare the 

extension of the rod for the optimal stiffness distribution for the equivalent cross-section (45) and 

extension of the rod of the regular form. Extension 0  of the optimal rod can be found from 

equations (32), (42) 

3

1
0 .

3

x
   (46) 

Extensions of the regular form rod   can be found from the boundary value problem (10), (11), 

(39) for /k c n   

3 tan
1 .

n c

c c

  
    

 

  (47) 

With a help of relations (46), (47) we find the relative decrease of the rod extension due to 

optimal distribution of the inclusions volume 

0 100%.
  




  (48) 

For the considered parameters (44) the relative decrease of the extension   is of amount 50%, 

i.e. for 
210 ,c   46.6%;   

25 10 ,c    49.1%;   
310 ,c   49.7%.   

6. FG steps between inclusions 

Now we are aimed to analyse an influence of FG steps between equal inclusions. Consider the 

basic two-component rod (Fig. 6) with equal elastic inclusions, k const . Assuming a fixed number 

of inclusions n  and ,L n  we have 1l  . Now we change the distance l . In order to describe the 

rule of the step changes, and following reference [15], we apply a steps function ( )f x , such that   

( ) ,if x i      (49) 
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where ix  is a co-ordinate of the i-th inclusion. 

Properties of the steps function protecting the constant number of inclusions can be defined via 

Fig. 8, which can be treated as a nomogram to define co-ordinates of the inclusions versus function 

steps. 

 

Figure 8.   Nomogram to define co-ordinates of the i-th elastic inclusions ix   

for a given steps function ( ).f x   

Figure 8 implies that in order to protect constant number of inclusions, the function ( )f x  should 

have the following properties 

(0) 0, ( ) , '( ) 0.f f n n f x      (50) 

Relation '( )f f x x    yields approximation to the steps between inclusions. For the given step 

of the basic rod (Fig. 6) 1,f   the non-constant step of the FG rod x s   takes the following form 

1
.

'( )
s

f x
    (51) 

7. Direct problem for FG steps 

Proceeding in the similar way to that used for the FG inclusion sizes, we now consider the 

inclusions thickness approaching to zero, and the equations governing the rod deformation with the 

FG steps takes the following form 

2

12
1

( ( ) ) ,
n

i

d u
k f x i u q

dx




      (52) 
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where ( )x  denotes the Dirac delta function. 

We introduce the following variable ( )f x   
1( ( )).x f   Therefore, equation (52) is recast to 

the following form 

1

( ) ,
n

i

d du
k i u Q

d d
  

   

 
   

 
    (53) 

where: 
1( )

,
d f

d






  .Q q   

Equation (53) presents an equation with periodically discontinuous coefficients, and we may 

apply a homogenization procedure. Equation of equilibrium between inclusions (1) and compatibility 

conditions (2) for the considered FG steps take the following form 

,
d du

Q
d d  

 
 

 
  (54) 

0 0

0 0

( ) ( ) , .i i

i i

du du
u u ku

d d
 

 
   

   

   

   
     

   
  (55) 

After introduction of the fast variable /    and applying asymptotic series development 

regarding displacements 

2 3

0 1 2( ) ( , ) ( , ) ...,u u u u             (56) 

relations (54), (55) yield the following homogenization equations for 0 :u   

0
0

d du
ku Q

d d  

 
  

 
  (57) 

and the equation for the correction term 1 :u  

1 0 .
2

u d du n
Q

d d
 

   

    
      

    
  (58) 

If in the homogenization equation (57) we return to the original variable, we get 

2

0
02

'( ) .
d u

kf x u q
dx

     (59) 

52



It should be emphasized that the obtained homogenized equation (59) represents all physical 

aspect of the problem. The non-differentiable term occurring in the left hand side of this equation 

presents an "additional stiffness" governed by inclusions and continuously distributed along the rod 

length. In the case of FGS, this distribution is not uniform. In the case of FG steps, more dense 

localization of inclusions involves larger contribution of the "additional stiffness". Mathematically, 

this property is described by the derivative of the steps function '( )f x  in equation (59). 

8. Inverse problem for FG steps 

Consider the inverse problem for equation (59) with the boundary conditions (11), take the 

following control function 

'( ).kf x                            (60) 

Minimizing functional I represents the energy of elastic deformation  

0

0

min .

n

I u qdx      (61) 

Condition of keeping constant the number of inclusions (50) yields the isoperimetric form for the 

control function 

0

.

n

dx kn    (62) 

We apply also the technological bounds for  , analogous to (15), which will be satisfied 

automatically after introduction of the control function (16). One may easily convince that the 

considered inverse problem for the FG rod (59)-(62) coincides with the analogous problem (10)-(16). 

In what follows we illustrate how to find solution to the considered problem. 

9. Example of steps optimization 

We consider optimization of the steps for the rod (39). Similarly to condition (40), the following 

formula holds 

min 0.     (63) 

It means, that inclusions do not appear in the interval 1(0, )x . The illustrated requirement (63) 

yields the particular case considered in section 5 (for k  ). After defining the control function due 

to formula (45), the function ( )f x  defining the optimal coordinated of the inclusion constant is 

estimated with a help of the second condition of (50). We get finally 
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1

2 2

13

1

0, (0, ),

( ) 3 ( )
, ( , ).

2

x x

f x x n
n x x n

x k






 
 



  (64) 

The function ( )f x  for 100,   10,k   100n   is shown in Figure 9. 

 

Figure 9.   Nomogram for determination of the optimal coordinates of inclusions protecting the larger 

longitudinal rod stiffness for the linearly distributed load. 

Substituting equation (49) into (64) yield optimal coordinates of the inclusions: 

3
2 12 ( )

,
3

i

x k n i
x n




     (65) 

where: 1...100,i   and 1x  is defined by equation (43). 

In Figure 10 the a window enlargement of the nomogram part (Fig. 9) is shown for two first 

inclusions. 

 

Figure 10.   Scheme for determination of the coordinate of two first inclusions x1 and x2. 
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The first inclusion coordinate ( 1 11.45x  ) is found from equation (43), whereas the second 

inclusions coordinate 2 13.88x   is given by formula (65). 

Concluding remarks 

Introduction the step function (49) allowed solving problems of computations and optimal design 

of FGS with a FG inclusion dimensions and FG steps between inclusions using the unique approach. 

Both considered problems occurred identical from the mathematical points of view, whereas the 

difference between them consists in the meaning of coefficients in the state equations and control 

functions. 

While optimization the FGS with FG inclusion sizes and FG steps between inclusions it is 

recommended to search the control function on a set of piece-wise continuous functions. The 

optimization process is realized with a help of two mechanisms. First, we define boundary area where 

inclusions do not occur. Second, in the case of FG inclusion sizes we interlace inclusion dimensions 

to fit a rule of the external load distribution. The reported optimization mechanisms, being obvious 

from physical point of view, have found a mathematical foundation in our work. It is expected that 

the proposed method will be also sufficient during computations and optimal design of more complex 

heterogeneous structures governed by the differential equations of higher order. 

A second direction of the proposed method development is the FGS, where FG inclusion sizes 

and FG steps between inclusions appear simultaneously. 
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