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GAUSSIAN LIGHT BEAM PROPAGATION  
IN INHOMOGENEOUS MEDIUM  

 
 

In this work the results of numerical calculations describing 
propagation of Gaussian light beam in inhomogeneous media is 
presented. Numerical calculation was based on  scalar wave 
approximation. Additionally the split-step beam propagation method 
was exploited. 
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1. INTRODUCTION 

In many cases processes occurring in medium affect its properties, in 
particular its refractive index. For instance, diffusion or compression of air. As a 
consequence of the refractive index variations, parameters of the light beam are 
changed. 

It is possible to obtain these parameters using either wave optics or 
geometrical optics. It would seem that geometrical optics is simpler and proper 
method for such aims. But actually the ray equation [1,2] that describes the ray 
trajectory is neither analytically solvable nor in all cases true. Geometrical optics 
due to diffraction can yield significant errors when light beam is spatially 
limited. Therefore in this paper the wave optics was applied. 

Practically one of the most exploited light beam is a laser beam. The laser 
can be set to work in TEM00, that is, generates Gaussian light beam [3]. For this 
reason the trajectory and intensity distribution of such Gaussian light beam was 
considered below.  

In particular, the behavior of Gaussian light beam emitted by He-Ne laser 
(632.8nm) propagating in inhomogeneous media was examined. Numerical 
calculation was based on  scalar wave approximation, additionally exploiting the 
split-step beam propagation method [4,5]. 
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2. THEORETICAL FOUNDATIONS  
OF NUMERICAL CALCULATIONS 

The best description of light propagation in classical electromagnetism is 
given by the Maxwell’s equations 

Because, in this paper, only linear and non-magnetic (µr = 1)media without 
electric currents ( ) and free charges( ) are taken into account the 
electric flux density  and magnetic flux density  can be expressed in simple 
form by the electric field  and magnetic field  

Where: 
�o – vacuum permittivity or the electric constant 
�r – relative permittivity 
µo – permeability or magnetic constant 

Let us assume �r to be time-independent. Since additionally �o and µo are 
universal constants then the Maxwell’s equations take form:   

 
          (7) 

 
          (8) 

          (9) 

         (10) 

By taking the curl of both sides Eq.(8) and using the vector identity Eq.(11) (  is 
any vector) Eq. (12) can be derived where Laplacian is denoted by mark  . 
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The right hand side of the above equation in general (in inhomogeneous media) 
does not equal zero. For instance, during diffusion process in materials or very 
frequently in many kinds of fluid flows. Fortunately, when the variation of the 
relative permittivity �r is small over the distance of one wavelength of 
electromagnetic wave described by the above equation, the following 
approximation can be proved [6]. 

 
        (13) 

Since refractive index of medium n and its variation �n satisfy following formula 

 
        (14) 

It is possible to state that when the variation of the refractive index is small over 
the distance of one wavelength of optical wave Eq.(15) can be written. 

Due to the facts that the analogous equation as above can be derived for 
magnetic field and the scalar wave approximation will exploit in this paper, 
Eq.(15) can be rewritten in the form.   

For the reason, that for monochromatic light beams generated by lasers, the 
harmonic time dependence of electric and magnetic fields can be assumed and 
such beams propagate predominantly in one direction (for instance along z-axis), 
the scalar function U can be factorized in following form. 

   –  propagation constant. 
� – angular frequency,  
c – speed of light in vacuum. 
Substitution Eq.(17) to Eq.(16) yields  

Where  denotes so called “transverse Laplacian”. In many cases it is 

reasonable to assume that function u very slowly varies along z direction. That 
means  

 
        (15) 

 
        (16) 

         (17) 

 
        (18) 

 
        (19) 
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Since  the right hand side of Eq.(18) can be rewritten in different shape 

The substitution of Eq.(20) to Eq.(18) leads to Eq.(21) on condition expressed by 
Eq.(19). 

For the reason, that in optical applications refractive index is more convenient in 
use than relative permittivity, the relationship between variation of  refractive 
index  and variation of  relative permittivity  has to be found. 

Exploiting this outcome Eq.(21) can be rewritten as follows 

The split-step beam propagation method will be used to solve above equation. 
First what is necessary to use this method is to rewrite Eq.(23) in the operator 
form. 

Where operator    and operator  . 

The solution of Eq.(24) is described by 

From above equation it is seen that if the field u(x,y,0) is known in the plane XY 
at z = 0 it is possible to find the field u(x,y �z) in the plane XY at z = �z then 
knowing the field u(x,y �z) the field u(x,y 2��z) at z = �z can be found and so on. 
This recursive formula enables to determine step by step field in long distance 
from the source plane of light. 
The simplest manner of proceeding that enable us to figure out the right hand 
side of Eq.(25) is to use successively Fourier transform and inverse Fourier 
transform. But for this purpose the below relationship must be satisfied. 

The relationship (26) is satisfied when operators  and  commute. In this case it 
is not perfectly true but when refractive index varies very small in all direction 
the Eq.(26) is approximately fulfilled.   

    (20) 

 
        (21) 

 

 

        (22) 

 
        (23) 

 
        (24) 

         (25) 

         (26) 
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3. RESULTS OF NUMERICAL CALCULATIONS 

Using the theory briefly presented above, the intensity distribution of the 
light on subsequent XY planes along Z axis with increment �z = 0,5m was 
calculated. For clarity of plots only some of them are shown. In all cases the 
light beam at the origin, that is, at the input plane at z = 0 had the constant phase 
and Gaussian distribution of its amplitude. That means that input plane coincide with 
the beam waist wo. The profile of the amplitude at the origin was taken in the form 

All calculations was made on assumption that light propagates in the air and 
its refractive index no is roughly equal to 1.0003. 

All figures below present how optical inhomogeneity of the medium affects 
Gaussian light beam propagation. In calculations that enabled drawing Figs. 1-3 
the following assumptions were made: the refractive index of the medium is a 
function of x, that is, n = no(1-5�10-5

�x) and the waist of beam wo = 0,001m. One 
can notice that the light beam, in Figs. 1-3, deflects and diverges but the 
characteristic Gaussian profile does not change. 
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Fig. 1. Contour plots show the intensity distribution of the light across the laser beam on 

input plane at z = 0 and on the output plane at z = 20 m. On the total path of the 
light beam the refractive index varies linearly in x direction. 

 
The set of Figs. 4-6 similarly to the set of Figs. 1-3 shows the laser beam in 

inhomogeneous medium. But now the waist of beam at the input plane  
wo = 0,004m and the refractive index of the medium is described by the following 
function n = no(1 – 5�10-3

�(x2 + y2)). Analysis of Figs. 4-6 evidently demonstrate that 
in contrast to the former case, the light beam does not tend to constantly deflect from 

 
        (27) 
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previous direction of propagation.  Instead of constant deflection the beam 
undergoes oscillations. One can perceive, in Figs. 4-6, two types of oscillations: 
longitudinal and transverse. 
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Fig. 2. Normalized intensity profile of light beam along Z axis. The intensity was 

normalized with respect to maximal intensity I0 on the input plane at z = 0 
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Fig. 3. The plots show contours of the laser beam along Z axis: a) projection on the 

plane XZ.  b) projection on the plane YZ 

Longitudinal oscillations cause periodically focusing of the light. Transverse 
oscillations caused by the fact that the symmetry axis of light beam was shifted 
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with respect to the symmetry axis (Z axis) of medium refractive index 
distribution stimulate  periodically moving away and towards Z axis. 
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Fig. 4. Contour plots show the intensity distribution of the light across the laser beam on input 

plane at z = 0 and on the output plane at z = 100 m. On the total path of the light beam 
the refractive index varies linearly in x direction 
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Fig. 5. Normalized intensity profile of light beam along Z axis. The intensity was 

normalized with respect to maximal intensity I0 on the input plane at z = 0 
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Fig. 6. The plots show contours of the laser beam along Z axis: a) projection on the 

plane XZ.   b) projection on the plane YZ 
 

The set of Figs. 7-9. shows also the laser beam in inhomogeneous medium 
and  the the waist of beam at input plane is the same as previous (wo = 0,004m) 
but the refractive index of the medium is described by function  
n = no(1–5�10-3

�x3). 
Due to the asymmetry of the function describing refractive index of the 

medium the light beam is constantly deflected from its previous direction. 
Additionally the light beam loses its characteristic Gaussian profile. 
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Fig. 7. Contour plots show the intensity distribution of the light across the laser beam on 

input plane at z = 0 and on the output plane at z = 100m. On the total path of the 
light beam the refractive index varies linearly in x direction 
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Fig. 8. Normalized intensity profile of light beam along Z axis. The intensity was 

normalized with respect to maximal intensity I0 on the input plane at z = 0 
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Fig. 9. The plots show contours of the laser beam along Z axis: a) projection on the 
plane XZ.   b) projection on the plane YZ  

4. CONCLUSIONS 

Above propagation of Gaussian light beam in inhomogeneous media was 
numerically examined. The numerical calculations were performed for three 
cases. Each case differs from others refractive index distribution in the medium. 

The analysis of the numerical calculations presented in Figs.1-9 shows that 
when the function describing refractive index of the medium is odd function the 
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light beam undergoes deflection from previous direction of propagation, but only 
when mentioned earlier function is linear, the light beam keeps its Gaussian 
characteristic shape. But when the function describing the refractive index of the 
medium is quadratic-type and has maximum at axis along which the light 
propagates, both the path of the light beam and its intensity experiences 
oscillations. What is more surprising in this case, in spite of the fact, that the 
function describing the refractive index of the medium is nonlinear the beam 
keeps its Gaussian shape. 
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PROPAGACJA WI�ZKI GAUSOWSKIEJ  
W O�RODKU NIEJEDNORODNYM 

 
Streszczenie 

Praca przedstawia wyniki oblicze� numerycznych rozkładu nat��enia 
wi	zki lasera He-Ne w trakcie propagacji przez trzy niejednorodne o
rodki 
ró�ni	ce si� charakterem tej�e niejednorodno
ci. Do oblicze� wykorzystano 
przybli�enie pola skalarnego i rekurencyjnie liczono kolejne profile 
intensywno
ci wi	zki 
wiatła. 

 




