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Indanthrone, an old, insoluble dye can be converted into a solution
processable, self-assembling and electroluminescent organic semi-
conductor, namely tetraoctyloxydinapthol2,3-a:2’,3'-h]phenazine
(P-C8), in a simple one-pot process consisting of the reduction of the
carbonyl group by sodium dithionite followed by the substitution with
solubility inducing groups under phase transfer catalysis conditions.

An impressive development of organic electronics in the past
decade was inherently associated with the elaboration of new
synthetic strategies leading to low and high molecular weight
organic semiconductors, mainly of a fused aromatic and hetero-
cyclic nature." Among the many promising approaches in the
synthesis of semiconductors with tunable redox, spectroscopic
and electronic properties, functionalization of oligoacenes with
pyridine- or pyrazine-type moieties deserves special attention.™
Replacement of some methine-type carbons with nitrogen
radically changes the properties of the resulting semiconductors.
As indicated by Winkler and Houk® N-substituted oligoacenes
may be considered as potential n-type semiconductors because
of their high electron affinity’ in contrast to oligoacenes not
containing nitrogen atoms which are widely used in organic
electronic devices as p-type semiconductors."™* Moreover,
N-substituted oligoacenes are less sensitive to oxidative degrada-
tion or to dimerization processes as compared to their all carbon
counterparts.’ Finally, by controlling the N to C ratio, as well as
the positions of nitrogen atoms in the molecule, it is possible to
prepare derivatives strongly differing in their physical properties,
adapting them to a given application.>®
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Initially developed methods for the preparation of N-substituted
acenes consist of the condensation reaction between o-diamino-
acenes with o-diketones (or hydroxyketones).>*“” Other synthetic
strategies towards spatially expanded azaacenes involve a Buchwald-
type coupling between o-diaminoacenes with o-dichloroacenes.””®
More recently, a ‘zig-zag”-type azaacene molecule, namely
dinaphtho[2,3-a:2’,3’-h]phenazine substituted with solubilizing
triisopropylosilylethynyl groups was obtained by the oxidative
coupling of two 2-aminoanthracene molecules.’

Popular alizarin-type dyes such as indanthrone or flavanthrone
are structurally strikingly similar to several azaacene semiconductors
presently tested as components of organic electronic devices. %%
In the past six decades the research interest in these compounds was
very limited, and few publications described liquid crystallinity
of indanthrone derivatives,"* their nonlinear optical properties,"
or their possible use as low molecular weight Bcl2 inhibitors."
Meanwhile several new semiconductors have been obtained by
functionalization of well known dyes (including natural ones).
The use of isoindigo ((E)-1H,1H'{3,3']bindolylidene-2,2’-dione)**
or diketopyrrolopyrrole or diketopyrrolopyrrole-derived azaacenes'
as a building block in the synthesis of solution processable organic
semiconductors must be quoted here as an instructive example.

In this communication we describe the preparation and detailed
characterization of a new, solution processable, electroactive conju-
gated molecule, namely tetraoctyloxydinaptho[2,3-a:2',3"-h]phenazine
(P-C8) - tetraalkoxy-substituted indanthrone (Scheme 1). This tetra-
octyloxy derivative of diazaacene, containing a phenazine-type central
unit was synthesized from a well known commercially available blue
dye - indanthrone - insoluble in organic solvent reagents which can
be obtained from 1-aminoanthraquinone (see ESIt). Indanthrone is
readily transformed into P-C8 in a one-pot system by carrying out the
carbonyl group reduction with sodium dithionite followed by the
substitution reaction under phase transfer catalysis conditions. This
is a well known method, previously used for the synthesis of alkoxy
derivatives of quinone moieties containing compounds,’® modified
here by replacing zinc with sodium dithionite.

The "H and "*C NMR spectra of P-C8 are fully consistent with the
condensed zig-zag dinaphtho[2,3-a:2’,3'-h]phenazine structure of Cyy,
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Scheme 1 Synthetic route to P-C8.
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Fig. 1 (a) X-Ray crystallographic structure of P-C8. (b) Crystal structure
packing of P-C8 in the unit cell (a = 9.93781(14) A, b = 15.1528(2) A, ¢ =
17.8125(2) A, « = 69.7564°(13), § = 88.9555°(11), y = 87.1772°(12)).

symmetry (see ESIt). In particular two doublets can be observed in
the aromatic part of the '"H NMR spectrum with the coupling
constant / = 9.5 Hz which unambiguously originate from four
protons of the phenazine ring. The presence of the pyrazine ring
was further corroborated by Field Desorption (FD') and Electron
Tonization (ET') mass spectrometry, which gave molecular peaks of
893.6 and 892.7, respectively (caled for (CooHgoN,04)" = 892.6).

P-C8 readily crystallizes in THF solutions yielding good-quality
single crystals suitable for crystal structure determination. There are
two almost planar molecules in the triclinic unit cell (space group:
P1) (see Fig. 1). For details concerning crystal structure determina-
tion and the crystallographic parameters see the ESL

P-C8 shows a strong tendency to form self-assembled mono-
layers on the surfaces of appropriate substrates such as, HOPG.
Fig. 2 shows a representative STM image of a monolayer

Fig. 2 (a) STM image and (b) corresponding model of adsorption geo-
metry of a monolayer of P-C8 deposited from hexane on HOPG graphite
(15 x 15 nm?, Iy = 1 nA, Vyp = —1 V).
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deposited from hexane solution. The unit cell parameters deter-
mined from this image are: a = 20.5 A, b = 18.5 A, o = 87° yielding a
nearly rectangular 2D unit cell. The shape of the unit cell is in
contrast to the three-fold symmetry of the graphite surface and
clearly indicates that adsorbate-adsorbate interactions are a domi-
nant factor determining the supramolecular organization of P-C8 in
the monolayer. Both 2D and 3D supramolecular structures are
governed by the mode of substituent interdigitation. The main
difference between these organizations has its origin in a different
spatial orientation of the alkoxy substituents with respect to the
conjugated core. In the monolayer, both parts form the same plane
whereas in the single crystals they are nearly orthogonal. As a
consequence the 2D cell parameters are increased.

The redox properties of P-C8 were studied using cyclic
voltammetry. Its cyclic voltammogram yields two irreversible
oxidation peaks and one reduction peak (see Fig. S5 in the
ESIt). The HOMO and LUMO positions, determined from the
electrochemical studies'” are significantly altered as compared
to the case of the corresponding levels in phenazine (see
Scheme 2).”¢¥ P-C8 can be considered as a DAD molecule with
a central electroaccepting phenazine unit connected to two dialkoxy-
naphthalene donors. This chemical constitution results in a
significant lowering of the electrochemical band gap from 2.91
in phenazine to 1.89 eV in P-C8.

It is instructive to confront the electrochemical data with
the plots of frontier molecular orbitals and spin densities of the
radical cation and radical anion formed, respectively, upon the
oxidation and reduction P-C8, obtained from quantum chemical
calculations. They were performed using the Gaussian09 Revision
D.01"® package and employing the hybrid B3LYP' exchange
correlation potential combined with the 6-31G(d,p) basis set.
The HOMO is extended over the aromatic rings avoiding the
central nitrogen atoms whereas LUMO is preferentially located on
the central phenazine unit. Upon the formation of a radical cation
through oxidation the spin density preferentially concentrates
on the dialkoxynaphthalene D segment. Reduction of P-C8 to a
radical anion moves the spin density towards the central
phenazine part (see Fig. S6 in the ESIt). This finding supports
the DAD nature of the studied compound and explains its
electrochemical properties.

In Fig. 3 the absorption spectra of indanthrone and P-C8
are shown, the latter being compared with the calculated one.
In the spectrum of indanthrone one unresolved band peaking
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Scheme 2 Comparison of HOMO and LUMO energy levels of phenazine
and P-C8 (phenazine data are taken from ref. 7g).
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Fig. 3 Absorption spectra of indanthrone and P-C8 solutions in chloro-
form together with its emission spectrum. The calculated positions and
relative oscillator strengths of the electronic transitions of this compound
are depicted as red bars for comparison. The inset is the photograph of
P-C8 solution under UV light.

at 278 nm is observed. For P-C8 three bathochromically shifted
peaks at 300, 333 and 489 nm with a pronounced vibrational
structure are registered. The spectrum is similar to those reported
for other azaacenes™®°?° and consistent with the calculated transi-
tion (see Fig. 3 and Table S3 in the ESIt). The lowest energetic band
(at 489 nm) is an intramolecular CT band associated with DA
interactions involving charge transfer between the HOMO localized
on the anthracene parts of the molecule and the LUMO located on
the phenazine central part. It is worth noting that the HOMO-
LUMO transition is highly privileged due to the symmetry of the
molecule being restricted to the centrosymmetric (C;) point group.
Since the HOMO and LUMO belong to A, and A, irreducible
representations, respectively, the transition between them is highly
privileged according to the Laporte selection rule. For a full analysis
of the electronic transitions, a natural transition orbital analysis
was performed and is included in the ESL¥

Finally, a difference of 0.41 eV between the optical and electro-
chemical band gaps should be pointed out. This is mainly associated
with the exciton binding energy which in some organic compounds
may reach values of up to 0.5 eV.*!

P-C8 is photoluminescent, emitting green light with a relatively
low Stokes shift of 881 cm™" (22 nm) (see Fig. 3). The measured high
photoluminescence quantum yield (56%) together with its short
lifetime (3.9 ns) prompted us to apply this derivative as an active
component of “guest-host” type organic light emitting diodes.
In Fig. 4 the electroluminescence spectrum of 1 wt% molecular
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Fig. 4 Electroluminescence spectra of: 1 wt% dispersion of P-C8 in PVK +
PBD matrix (red line) and pure PVK + PBD matrix (blue line). The inset
shows the zoom of the P-C8 electroluminescence spectrum over nar-
rower spectral range.
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dispersion of P-C8 in a two component matrix consisting of
hole transporting poly(9-vinylcarbazole) (PVK) and electron
transporting 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole
(PBD) is compared with the spectrum of the pure matrix. It is
clear that the Forster energy transfer is efficient and complete
since the spectrum is characteristic of P-C8 with no features
originating from the matrix (PVK + PBD). This is assured by a
strong overlapping of the P-C8 absorption spectrum with the
emission spectrum of the matrix.

Preliminary tests carried out on non-optimized devices of the
following structure ITO/PEDOT:PSS/PVK + 1 wt% P-C8 + PBD/
LiF/Al yield a luminance exceeding 250 cd m > and a luminous
efficiency of 1.0 cd A" (for details see the ESIY).

To summarize, we have demonstrated that indanthrone, an
old insoluble dye, can be transformed into an interesting,
solution processable semiconductor through a one-step, one-
pot process involving its reduction and substitution with alkoxy
solubilizing groups. The self-assembling capabilities of P-C8
and its interesting luminescent and optoelectronic properties
should be pointed out.

This research was carried out in the framework of the project
entitled “New solution processable organic and hybrid (organic/
inorganic) functional materials for electronics, optoelectronics and
spintronics” (Contract No. TEAM/2011-8/6), which was operated
within the Foundation for the Polish Science Team Programme
cofinanced by the EU European Regional Development Fund. The
Gaussian 09 calculations were carried out in the Wroclaw Centre
for Networking and Supercomputing, WSCC, Wroclaw, Poland,
http://www.wess.wroc.pl, under calculational Grant No. 283.
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