• polski
    • English
Lodz University of Technology Repository
TUL Repository
  • English 
    • polski
    • English
  • Login
View Item 
  •   Home
  • Wydział Mechaniczny / Faculty of Mechanical Engineering / W1
  • Artykuły (WM)
  • View Item
  •   Home
  • Wydział Mechaniczny / Faculty of Mechanical Engineering / W1
  • Artykuły (WM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theoretical analysis of the foil bearings dynamic characteristics.

Thumbnail
View/Open
Theoretical_analysis_foil_Tkacz_2015.pdf (3.919Mb)
Date
2015
Author
Tkacz, Eliza
Kozanecki, Zbigniew
Kozanecka, Dorota
Łagodziński, Jakub
Metadata
Show full item record
Abstract
In the theoretical analysis, three systems were identified: a rotor, a gas film and a exible structure. The mathematical analysis involves formulation of analytical equations for each of these elements and determination of their interactions. It was found that the rotor dynamics was subject to Newton's second law of motion, the gas flow in the bearing could be described by the Reynolds equation, whereas a spring-damper model was selected for the structural analysis. The Reynolds equation is a differential equation the exact solution to which is unknown. The work describes the finite difference method in detail, where the partial derivatives in the Reynolds equation are replaced by a system of algebraic equations. In order to solve the resulting system, the Alternating Direction Implicit method (ADI) was used. Thanks to those calculations, it was possible to determine the bearing dynamic characteristics using both the linear and non-linear method.
URI
http://hdl.handle.net/11652/1206
Collections
  • Artykuły (WM) [320]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV