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Abstract: In the theoretical analysis, three systems were identified: a rotor, a
gas film and a flexible structure. The mathematical analysis involves formu-
lation of analytical equations for each of these elements and determination of
their interactions. It was found that the rotor dynamics was subject to New-
ton’s second law of motion, the gas flow in the bearing could be described by
the Reynolds equation, whereas a spring-damper model was selected for the
structural analysis. The Reynolds equation is a differential equation the exact
solution to which is unknown. The work describes the finite difference method
in detail, where the partial derivatives in the Reynolds equation are replaced
by a system of algebraic equations. In order to solve the resulting system,
the Alternating Direction Implicit method (ADI) was used. Thanks to those
calculations, it was possible to determine the bearing dynamic characteristics
using both the linear and non-linear method.

1. Introduction

The foil bearing is a modern type of oil–free, aerodynamic bearing used in high speed tur-

bomachines such as high temperature compressors and microturbines. The demand for this

type of solution is derived from electricity production for micro combined heat and power

(CHP) plants, so–called distributed energy resource (DER), where the power of the instal-

lation is usually less than 5 kWe. The small power system can be based on the Organic

Rankine Cycle (ORC) with a low boiling working medium. In this solution the basic ma-

chine is a small turbine driving an electric generator. In order to reach the nominal power

in the reduced size machine the generator needs to rotate at a speed of 10000–100000 rpm.

Such high speeds are impossible to reach with the use of conventional rolling–element bear-

ings or common oil–lubricated bearings, since their operation in these conditions may lead

to instability of the machine rotating system. Furthermore, in order to maintain the purity

of the cycle, we are searching for a hermetic solution, where the machine is equipped with

bearings lubricated with the working medium.

The presented here concept of a foil journal bearing is related to these assumptions.

2. General considerations about gas foil bearings

Because of the method of lift generation two types of gas bearings can be distinguished:

self–acting, so called aerodynamic bearings and gas powered or aerostatic bearings. The foil
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bearing is an aerodynamic support, which is made up of compliant surfaces (a bump and

a top foil) (see figure 1), [1]. The uniqueness of foil bearing operation results from the fact

that the top foil is clenched during the bearing operation on the rotating journal by means

of an elastic bump foil. The aerodynamic film of a very low thickness, theoretically close to

the cylindrical one, is generated by viscosity effects.

Figure 1. Compliant foil bearing

An important problem of the aerodynamic gas bearings application is related to the

start–up and the shut–down in contact with the shaft surface, and thus:

– a high drive moment for the start-up (disputable from the viewpoint of turbine me-

chanical characteristics) is needed,

– there is a limited number of start-up/shut-down cycles (wear),

– in a case of the heat generation, a cooling system is required.

In general gas bearings have a limited load capacity. Furthermore, the analysis of gas

foil bearings is difficult due to interactions between the gas film pressure and the complicated

deflection of the top foil and the underlying bump strip support structure.

A great advantage of foil bearings is such that they require no external pressurization

system for the working fluid and so the surrounding gas can be used as the lubricant. Other

benefits are [2]:

– high rotational speeds,

– little maintenance,

– compliance thanks to the bump foil structure,

– compactness,

– no impact on the machinery environment thanks to the absence of external lubrication

system.
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3. Theoretical analysis of the gas foil bearing

In order to define a mathematical model for foil bearings, at first, three systems have to be

isolated: rotor, gas film and elastic structure. In table 1 physical hypothesis are presented

for each system.

Table 1. Hypothesis adopted for foil bearing analysis

System Hypothesis

Rotor

non-deformable

in equilibrium position for given rotational speed

Gas film

thin–film

compressible, Newtonian fluid

isothermal, continue, laminar flow

general curvature of the film is negligible

non–slip boundary conditions

inertial forces and mass forces are negligible

viscosity and density do not vary along film thickness

Elastic structure
elastic deformation

quasi-static

The mathematical analysis will therefore apply to each system separately and determine

their interactions. This section will discuss analytical equations describing the phenomena

occurring in the foil bearing.

3.1. Foil bearing geometry and coordinate systems

Due to the geometry of the bearing it is convenient to define a cylindrical coordinate system

θηz (fig. 2) where the z axis coincides with the Z axis of the bearing global coordinate system.

The η axis is the radial coordinate measured from points located on the sleeve surface to

shaft surface located points. The angle θ determines the circumferential coordinate. It is

assumed that the parallel displacement of the journal axis is characterized by the relative

eccentricity of the bearing ε, where ε = e/C, C being the bearing clearance. In the local

coordinate system the angle ϕ is determined for a given equilibrium position by the centers

line, i.e. the axis intersecting points Of , Oa (the angle between the X and X ′ axis in. fig. 2).

Then the cylindrical geometry of the gas film in the bearing can be found from equation 1.

H = 1 − ε cos(θ − ηL) (1)

where H is the dimensionless film thickness, ε – the dimensionless eccentricity and ηL – the
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Figure 2. Cylindrical coordinate system for gas film calculation

angle determining the position of the foil locket.

3.2. Hydrodynamic model for gas foil bearings

The theoretical work of Reynolds, [6], is generally considered to be the hydrodynamic lu-

brication theory basis since it led to the Reynolds Equation. The Reynolds Equation is a

partial differential equation derived from the mass and momentum conservation equations

(Navier–Stokes equations) governing the pressure distribution of thin viscous fluid films and

the lubricant flow. The Reynolds Equation (2) was used to describe the pressure distribution

in nearly any type of fluid film bearings under hypothesis cited in table 1.

− ∂

∂θ

(
PH3 ∂P

∂θ

)
− ∂

∂ξ

(
PH3 ∂P

∂ξ

)
+ Λ

∂

∂θ
(PH) +

∂

∂τ
(PH) = 0 (2)

where

Λ = 6µωR2

paC2 is the compressibility number,

P – the dimensionless pressure,

τ – time.

 Fx = −
∫ ξ2
ξ1

∫ 2π

0
P cos θ dξ dθ

Fy = −
∫ ξ2
ξ1

∫ 2π

0
P sin θ dξ dθ

(3)

When the pressure distribution is known, the aerodynamic lift force can be calculated

according to the equation 3.
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3.3. Model for the foil structure elastic deformation

The geometry of the flexible structure shown in fig. 3a) is taken into consideration. Its

material properties and stresses allow to consider the elastic solid and so the structure can

be modelled as series of springs and dampers (see fig. 3b)). Damping properties being

originated from friction phenomena.

a) b)

Figure 3. Flexible structure

In order to calculate the deformation of the structure, four hypothesis have been formu-

lated:

H1: The structure deflection depends only on pressure.

H2: The rigidity of the structure is linear and the elastic force is given by the relation

FS = kf∆h, where kf is the elasticity coefficient and ∆h is a length change of the

spring.

H3: There is no axial deformation of the structure.

H4: For given θ and different ξ the deformation has the same value.

Based on these hypothesis the relationship between the change in punctual force, fbi

and foil deflection, hij , can be expressed by equation 4, [3]

fbt+dt
i − fbti =

ht+dt
ij − htij

s
+ cf

(
dh

dt

∣∣∣∣
t→t+dt

− dh

dt

∣∣∣∣
t−dt→t

)
(4)

where s = 1/kf and cf is a damping coefficient.

3.4. Rotor dynamics

The rotor of mass 2M is treated as a rigid structure and it is supported symmetrically in

two identical finite lengths bearings (without gyroscopic motion) (see fig. 4). This approach

allows to evaluate the influence of the bush behaviour on the rotor trajectory. Forces acting

on the rotor result from its own weight, the unbalance, any dynamic (changing in time) loads

and the pressure field in the gas film. They depend on the shaft position and the rotational

speed.
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Figure 4. Rotating system model

More specifically, when the journal rotates, each bearing supports, [1]:

– the mass M ,

– the static force W0 = F ,

– a dynamic force of harmonic type Wd(t) = Wd sin(γt), where γ is a frequency of

pulsation,

– a vibrational synchronous excitation due to the unbalance. This excitation is charac-

terised by its eccentricity eb,

– the aerodynamic forces F (t) calculated from the pressure distribution in the gas film.

This can be expressed by Newton’s second law equations:

 Mẍ =
∑
Fext/x

Mÿ =
∑
Fext/y

(5)

or with the right–hand side of the equation developed and put in dimensionless form:

 Mẍ = W 0 +W d/x(T ) +Mebω
2 cos(T ) + F x(T )

Mÿ = W d/y(T ) +Mebω
2 sin(T ) + F y(T )

(6)

where (x, y) are rotor centre coordinates.

According to the linear theory, dynamic properties of aerodynamic gas bearings are

usually represented by a set of eight coupled dynamic coefficients (kij , bij), linearized around

the static equilibrium position of the bearing, [4]. Limited excitation loads allow one to

linearize the forces in the bearing film and to determine the equivalent values of coupled

bearing stiffness and damping coefficients.

The bearing static equilibrium position determines the initial conditions for an analysis

of the bearing dynamics and it is noted by subscript .0. Then, we introduce the position

perturbation and the velocity perturbation, whence stiffness and damping coefficients are

defined as follows
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0
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∂ẏ

∣∣∣∣
0
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It should be highlighted that the lack of precise criteria, which allows one to determine

the applicability range of the linear method, often leads to serious errors in the dynamic

analysis of the rotor–bearings system.

4. Numerical methods

Due to the non–linear nature of the equations of fluid motion, they can be solved in only

a few, very specific situations, hence the need for a numerically approximated solution. In

order to make possible the approximation process of solving, partial differential equations

need to be discretized. As a result of the discretization, differential equations are replaced

by an algebraic equations system. There exists different methods of discretization, the most

common are: Finite Difference Method (FDM), Finite Element Method (FEM) and Finite

Volume Method (FVM). For the project needs the Finite Difference Method was used to

solve equations governing the gas film behaviour. All described methods were solved using

the structured programming language, Fortran.

By replacing P 2 = Q, the Reynolds equation can be rewritten (equation 9). According

to the finite difference method, derivatives in partial differential equations can be replaced

by central differences, [5]. For example, first derivatives will be approximated according to

equations 10 and second derivatives – according to equations 11.

2P
∂H

∂τ
+
H

P

∂Q

∂τ
+ 2ΛP

∂H

∂θ
+ Λ

H

P

∂Q

∂θ
−H3

(
∂2Q

∂ξ2
+
∂2Q

∂θ2

)
+

−3H2

(
∂H

∂θ

∂Q

∂θ
+
∂H

∂ξ

∂Q

∂ξ

)
= 0

(9)

∂H

∂θ
≈
Hn
i,j+1 −Hn

i,j−1

2∆θ
∂H

∂ξ
≈
Hn
i+1,j −Hn

i−1,j

2∆ξ

(10)

∂2Q

∂ξ2
≈
Qni+1,j − 2Qnij +Qni−1,j

(∆ξ)2

∂2Q

∂θ2
≈
Qni,j+1 − 2Qnij +Qni,j−1

(∆θ)2

(11)
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In order to solve the Reynolds equation, the Alternating Direction Implicit (ADI) method

can be used. This method is applied to the finite differences and consists on splitting the

calculation into two steps. In the first step derivatives with respect to θ are evaluated

while derivatives with respect to ξ are evaluated in the second step. Then, according to the

tridiagonal elimination method, the summands are grouped and equations 12 and 14 can be

written.

AnijQ
n+1
i,j−1 +BnijQ

n+1
ij + CnijQ

n+1
i,j+1 = fnij (12)

where

Qn+1
ij = XijQ

n+1
i,j+1 + Yij

Xij =
−Cnij

Bnij +AnijXi,j−1

Yij =
fnij −AnijYi,j−1

Bnij +AnijXi,j−1

Qn+1
i,1 = Qn+1

i,N+1 = Qni,1

(13)

Dn
ijQ

n+2
i−1,j + EnijQ

n+2
ij + FnijQ

n+2
i+1,j = gn+1

ij (14)

where

Qn+2
ij = XijQ

n+2
i+1,j + Yij

Xij =
−Fnij

Enij +Dn
ijXi−1,j

Yij =
gnij −Dn

ijYi−1,j

Enij +Dn
ijXi−1,j

Qn+2
1,j = Qn+2

M,j = 1

(15)

The calculation of Qn+2
1,j ends an iteration cycle. The statements Qnij = Qn+2

ij and

Pnij =
√
Qn+2
ij start new iteration process.

5. Rotor trajectory in step function test

First, for the given static force, F0, the equilibrium position is found. This position is

determined by an eccentricity and a centers angle,(ε0, ϕ0) (see fig. 5, green point). Second,

for a static force, F1 = F0 + ∆F , another equilibrium position is calculated, (ε1, ϕ1). Then,

the dynamic calculation has been carried out for the dynamic force, the step function, defined

in equation 16.
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Fd(t) =

 F0 + ∆F, nt ≥ 60

F0, nt < 60
(16)

Figure 5. Pressure distribution in the gas film

The rotor trajectory can be observed in fig. 5. The final position, (εd, ϕd) (red point) is

then compared with (ε1, ϕ1) position. The deviation was less than 1% for ϕ and about 1.5%

for ε.

6. Conclusions

The present paper is a trial to show major equations and methods for the theoretical analysis

of a journal foil bearing. The equations were programmed by means of numerical modeliza-

tion and the model in Fortran have been developed. The ADI numerical method for solving

the Reynolds equation has given a good convergence. A choice of the spring–dumper model

for the elastic structure deformation is an important simplification, since it requires less

computational resources in comparison to finite element method based codes. The rotor

trajectory in step function dynamic excitation has been shown. The results pointed to good

programme performance. Other numerical tests have revealed a good stability of the foil

bearing.
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