Grounded HyperSymbolic Representations Learned through Gradient-Based Optimization




Tytuł czasopisma

ISSN czasopisma

Tytuł tomu


Wydawnictwo Politechniki Łódzkiej
Lodz University of Technology Press


Hyperdimensional computing is a novel paradigm, capable of processing complex data structures with simple operations. Its main limitations lie in the conversion of real world data onto hyperdimensional space, which due to lack of a universal translation scheme, oftentimes requires application-specific methods. This work presents a novel method for unsupervised hyperdimensional conversion of arbitrary image data. Additionally, this method is augmented by the ability of creating HyperSymbols, or class prototypes, provided that such class labels are available. The proposed method achieves promising performance on MNIST dataset, both in translating individual samples as well as producing HyperSymbols for downstream classification task.


Słowa kluczowe

artificial intelligence, hyperdimensional computing, representation extraction, neuromorphic architectures, sztuczna inteligencja, obliczenia hiperwymiarowe, ekstrakcja reprezentacji, architektury neuromorficzne


Łuczak P., Ślot K., Kucharski J., Grounded HyperSymbolic Representations Learned through Gradient-Based Optimization. W: Progress in Polish Artificial Intelligence Research 4, Wojciechowski A. (Ed.), Lipiński P. (Ed.)., Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, s. 319-324, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928.51.