• polski
    • English
Lodz University of Technology Repository
TUL Repository
  • English 
    • polski
    • English
  • Login
View Item 
  •   Home
  • Wydział Biotechnologii i Nauk o Żywności / Faculty of Biotechnology and Food Sciences / W5
  • Artykuły (WBiNoŻ)
  • View Item
  •   Home
  • Wydział Biotechnologii i Nauk o Żywności / Faculty of Biotechnology and Food Sciences / W5
  • Artykuły (WBiNoŻ)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The relationship between plasma concentration of metoprolol and CYP2D6 genotype in patients with ischemic heart disease

Thumbnail
View/Open
The_relationship_between_plasma_Wojtczak_2014.pdf (382.1Kb)
Date
2014
Author
Wojtczak, Anna
Wojtczak, Maciej
Skrętkowicz, Jadwiga
Metadata
Show full item record
Abstract
Background Metoprolol is the one of the most commonly used β-blockers in the treatment of ischemic heart disease and it is extensively metabolized in the liver undergoing oxidation by CYP2D6 isoenzyme of cytochrome P450. Gene encoding the CYP2D6 enzyme is characterized by genetic polymorphism. The CYP2D6 oxidation polymorphism has a major impact on the effectiveness and safety of the treatment. The aim of the study was to evaluate the relationship between plasma concentration of metoprolol and the CYP2D6 genotype in patients with ischemic heart disease. Methods Fifty patients were interviewed and subsequently enrolled into the study. The patients received metoprolol twice daily at a dose of 50 mg. The blood samples were analyzed for two major defective alleles for CYP2D6 – CYP2D6*4 and CYP2D6*3 – by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Metoprolol concentration in plasma was determined by using the new and unique high-performance liquid chromatography (HPLC) method in the author's own modification with Corona CAD detector (Charged Aerosol Detection). Results In the test group, genotypes conditioning poor oxidation (PM) occurred in 3 patients (6%), while 47 patients (94%) had genotypes coding for extensive metabolism (EM). Patients with PM genotypes had significantly higher plasma concentrations of metoprolol than the patients with EM genotype (mean 92.25 ± SD 36.78 ng/ml vs. mean 168.22 ± SD 5.61 ng/ml, respectively). Established relationships were statistically significant (NIR test, p = 0.0009). Conclusions This study demonstrated that the CYP2D6 genotype remains a major determinant of the metoprolol plasma concentrations. The pharmacogenetic effect is likely to have consequences on both, the clinical benefit of metoprolol treatment and adverse drug reactions. The use of Corona CAD detector seems to be a very good alternative method for the determination of metoprolol concentration in plasma.
URI
http://hdl.handle.net/11652/1142
http://www.sciencedirect.com/science/article/pii/S1734114014001030
Collections
  • Artykuły (WBiNoŻ) [169]

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV