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The object of analysis is a composite annular plate with the apparent properties
smoothly varying along a radial direction. The plate interacting with an elastic
heterogeneous subsoil with two moduli. The aim of contribution is to formulate
macroscopic mathematical model describing stability of this plate. The
considerations are based on those summarized in monographs (Wozniak et al. 2008,
2010). Some applications of the tolerance averaging technique for the modelling of
various stability problems for elastic microheterogeneous structures are presented in
papers; Baron (2003), Jedrysiak (2007), Jedrysiak and Michalak (2011), Michalak
(1998), Tomczyk (2010).

1. INRODUCTION

The contribution is devoted to the determine of stability of microheterogeneous
annular plates interacting with an elastic foundation with two foundation moduli. The
assumed model of foundation is a generalization of the well known Winkler model. The
introduction of an additional modulus of horizontal deformability of the foundation makes
it possible to describe the stability of the plate resting on a sufficiently fine net of elastic
point supports such as piles or columns. The object of the analysis is a composite thin
plate with the apparent properties smoothly varying along a radial direction of the plate
(Fig.1).

Fig. 1. A fragment of midplane of the plate with longitudinally graded microstructure:
a) microscopic level, b) macroscopic level
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Considerations are restricted to the two-phase of the functionally graded - type
composites. The plate is made of isotropic homogeneous matrix and isotropic
homogeneous beams which are situated along the radial direction. The plate is resting on
foundation, which has different moduli under the matrix and the beams. The plate and the
foundation have A-periodic microstructure along the angular axis and smooth and slow
gradation of effective properties in the radial direction. The generalized period A of
inhomogenity is assumed to be sufficiently small when compared to the characteristic
length dimension of the plate along the angular axis. Thus we deal with plate and
foundation having space-varying periodic microstructure.

The aim of this contribution is to formulate macroscopic models of stability of the
plate under consideration. There models will be referred to as tolerance and asymptotic,
respectively.

2. PRELIMINARES

Introduce the orthogonal curvilinear coordinate system OEZ'¢c® in the physical
space occupied by a plate under consideration. The time coordinate will be denoted by t .
Sub- and super-scripts ik, runover 1,2,3 and o,B,8 runoverl, 2. Setting x = (&',&?)

and z=&® it is assumed that the undeformed plate occupies the region
Q={(x,2):-h/2<z2<h/2,xeIl}, where IT is the plate midplane and h is the plate
thickness. We denote by g,, a metric tensors and by ., a Ricci tensor. Here and in the
sequel, a vertical line before the subscripts stands for the covariant derivative and
0, =0/0&". The plate rests on the generalized Winkler foundation whose properties are

characterized by vertical k, and horizontal k, foundation moduli. The foundation

reaction according to (Gomulinski (1967)) has three components acting in the direction of
the coordinates (z,p,®):

h h1
RZ :sz Rp =kt58pw Rgu :ktzgaq)w, (1)
The model equations for the stability of the considered plate will be obtained in the
framework of the well-known second order non-linear theory for thin plates resting on
elastic foundation (Wozniak et al. 2001). Denoting the displacement field of the plate

midsurface by w(x,t), the external forces by p(x,t)and by p the mass density related to
this midsurface, we obtain strain-displacement and constitutive equations

K. .= —VV‘ I"ﬂOLB = —DOLBYH KY!J s (2)

op
where: D =0.5D(g*g” +g“g™ +v(€”e™ + ™M), D=Eh*/12(1-Vv?).

The governing equations of the plate under consideration can be described by the
well known principle of stationary action. We introduce action functional defined by
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A = [ [EAQ Wiy 0, W (3,0, W(y, ), Wy, D)y, (3)

with Lagrangian defined by

L, o L
A =1 (i —n“Pw, w, - DO w w s —k, WW—ZktES "W, W)+ pw. )

where noB are in-plane forces and Kronecker-deltas §** will be treated as a tensor;
8" =1/p*, 8% =1.
For Lagrangian (4) we can write the Euler-Lagrange equation

Q0N _OA | ON | | OA | _j
otow ow \ow, ) (0w) o '

and the equilibrium equations

()

o o h2 o ..
(D WS\N‘V@)‘QB _(n B‘ﬁ)‘a _I(kt6 ﬁ\N‘B)‘a +sz+p'WZ p. (6)

This direct description leads to plate equations with discontinuous and highly oscillating
coefficients. These equations are to complicated to be used in the engineering analysis
and will be used as starting point in the tolerance modelling procedure.

3. TOLERANCE MODELLING

Introduce the polar coordinates system O&'¢?, 0< &' <¢, R <&® <R, so that the
undeformed midplane of annular plate occupies the region IT=[0,¢]x[R,,R,]. Let A,
0<A << @, is the known microstructure parameter. Denote IT, as a subset of IT of

points with coordinates determined by conditions (&',&?) e (\/2,9—A/2)x(R,,R,) . An
arbitrary cell with a centre at point with coordinates (£'¢%) in IT, will be determined by

AL E2) = (8 —M12,E  +012)x{E°}. At the same time, the thickness h of the plate

under consideration is supposed to be constant and small compared to the microstructure
parameter A .

In order to derive averaged model equations we applied tolerance averaging
approach. This technique based on the concept of tolerance and indiscrenibility relations
and on the definition of slowly-varying functions. The general modelling procedures of
this technique are given in books (Wozniak et al. 2008, 2010).

The fundamental concept of the modelling technique is the averaging an arbitrary
integrable function f () over the cell A()-
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el
<f>@E&)=4 [fn&)m. ™

oz

forevery &' e[L/2,0—A12], & €[R,R,].
The first assumption in the tolerance modelling is micro-macro decomposition of the
displacement field

W(E", 1) =W’ (", 1) +h* (E)V,A (€™, 1) (8)

for & eIl and t e (t,,1,) .
The modelling assumption states that w°(,&?), V,(.&?)are slowly-varying
functions with respect to the argument &'. Functions w°(,&%t)eSV2(IT,A),

V,(-&%,t) e SVZ(IT,A) are the basic unknowns of the tolerance model. Function h*(&')

are known, dependent on the microstructure length parameter A, fluctuation shape
functions.

Let h”(), 8,n*() stand for periodic approximation of h*(), 8,h*() in A,
respectively. Due to the fact that w(-,&%,t) are tolerance periodic functions, it can be

observe that the periodic approximation of w, (- &?,t) and o, w, (- &%,t) in A(-), have the
form

w, (y,6°,1) =W’ (€",1) +h* (y)VA(E" 1),
0 W, (¥,€%,1) =3,W° (€%, 1) + 3, * ()VA (", 1) + h*(Y) OV, (E* 1), (9)
Vig, (y,€%,8) = Wi° (8, 8) + hA (Y)V A (&%, 1),

for every x* eIT, almost every y e A(§") and every t e (t,,t,) .
The tolerance model equations will be obtained by the averaging of the lagrangian
A(g“,w,w‘aﬁ,vv‘a,v'v). Substituting the decomposition (8) of displacement field into

Lagrangian A and using the tolerance averaging approach, we obtain
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<A>=2<p>WW+ <ph? > W0V, +5 <phfe® >V, Vp+< p>w+< ph* >V, +
1 b 0 /0 kA ) 27 A 0
=5 <D > WepW = < DMWY > WV, — < D*™h >V Wl +

Y 1
—2<D""h" > WV, — < D" uh® >V, Vg, — 5 < D™ uh®u >V, Vg +

-2 < D*h*ih®y >V, Ve — 3 < D#?2hn® >V Vops —% <k, >w’w’+

2
—<k,h*>w’v, —% <k,h*h® >V,V, —% <k.g*g® > SZZVA‘ZVB‘2 +
h? h? h?
—— <k >8"wpV, -7 < kh* > 8% wpV,, < kh®ah®p > 8"V, Vg +

h2
—— <k > 8" W W -5 <0 > wWlawp— <nhM > WV, - <n*h* >V W +

-2 <n*hih® >V, Vg — <n*h*ih® >V, Ve, —3 <n®h*h® >V, Vepp
(10)

Applying the principle of stationary action to averaged functional A, the Euler-
Lagrange equations take the form
0o<L> ,0<L> o<L> o<L>
=z - + o =0
ot oW’ (8W0\qp)‘aﬁ (aw",a) ow’
0o<L> ,0<L> o<L> o<L>
N p _( )‘22 +( )12_ =0
ot 0V, 6VA‘22 OV, oV,

(11)

Using the averaged Lagrangian (10) we obtain the following system of equations
describing stability of the plate resting on microheterogeneous foundation

(<D™ > W), + (< DA >V,) o + (< DPPNA >V,0) 0 +
0 A _ h?® aByp,0 _ h? A 1B
+<k, >w'+<k,h" >V, T(<kt>6 W“s)‘a T(<kth L>3 VA)\B+

2
—h—(< k.h* > E‘SZBVA‘Z)‘B —(NaﬁWO‘B)‘a-f- <pu>Wl=<p>,
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< DllwhA\ll > WO\W-F < DllzzhA\n hB >V, +< DlnlhA\n hB\n >VB +

B|22
22y |y A 0 1122, Al B 22221, Al B
+(<D*™h"” >w \w)\zz +(<D™*h"h°u >VB)‘22 + (< D**h"h >VB‘22)‘22 +

=2(< D*Mhh "1 > W), —4(< D*#h M h® > Vg, )+ <k, h* h® >V +

B\z)\z
2 2
+<k,h* >w° _hT(< k.h* > 52BWO\B)‘2 +h7 <k, h%u > 8"w% (12)

2 2
_hT(< k h*h®>8%vy,), +hT <k h*uh®u > 8"V,

—(N% <h*h® >V ) + N™ <h®uh® >Vg+<puh?h® >V, =< ph* >

We have assume that forces n®® can be represented by a decomposition
n*(€)=N"@E)+n"@E), (13)

where N** =< n®? > is a slowly varying function and n**() is a fluctuating part of the
forces n*’(-), such that <" >=0. In Eq.(10) we have assumed that the fluctuating part
n°?()) of the forces n**() is very small compared to their averaged part N“*(-), and
hence <n?h*h® >= N*? <h*h® >.

The above equations have the smooth and functional coefficients in contrast to
equations in direct description with the discontinuous and highly oscillating coefficients.

Equations (12) together with micro-macro decomposition of displacement field (8)
constitute the tolerance model of the plate under consideration.

3. ASYMPTOTIC MODEL

For asymptotic modelling procedure we retain only the concept of highly oscillating
function. We shall not deal with the concept of the tolerance periodic function as well as
slowly-varying function. For every parameter e =1/n, n=12,...we define a scaled cell

A, =(-¢el/2,el/2) and by A_(x) = x+A, the scaled cell with a centre at &* TT .

The mass density p(-), moduli of the foundation k,(-), k,(-) and tensor of elasticity
D" () are assumed to be highly oscillating discontinuous functions u(-), k,(-), k()
D" ()eHO?(2,A) for almost every ¢E&“ell. If pu(), k0, k0,
D“™ () e HO?(Z,A) then for every £* eTT there exist functions u(y,&?), k,(y,&%),
k (Y,€%), D™ (y,x*) which are periodic approximation of functions u(-), k,(-), k.(-),
D*?® (), respectively.

The fundamental assumption of the asymptotic modelling is that we introduce
decomposition of displacement as family of fields
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wg(y,az,n=w°(y,az,t>+szﬁ“<§,a2)vA(y,Ef,t), yeA, (&) (14)

where F\A(y,Ef) are periodic approximation of highly oscillating functions h*(-) . From
formula (14) we obtain

0,W, (v,E%,1) =0,W’(y, €%, ) +&d,h A({&Z) Va(y.€%t)+e’h A({&Z) ONA(Y,E%)
0. W, (8%, = 20 (¥, %0+ (1 E) V4 (.87.1) +
#2000 (%) 0V, (y.8 0 +’h (L, E%) 0,V (8%
(7.8 ) =W (7,8 0+ %0 (L £ V(1,870
(15)

Bearing in mind that by means of property of the mean value, Jikov et al. (1994), function
h(y/eE?), yeA, (&), is weakly bounded and has under & — 0 weak limit. Under

limit passage € >0 for ye A_(£") we obtain

Wo(y,gz,t): wl(&,t) +0(e), aawo(y,&,z,t): o W’ (", 1) +0(e)

0, oW (y,8%,t)=0,,w(&%,1) + O(c)

Va(y.82.t)=V,a € 0+0().  aVA(y.E2.t)=0,V, (" ) +Oe) (16)
0,V (1,E2,t)= 0,V (%) + O(e)

Wy, E2,t)=W0 (€ ) +0@),  Va(y.£2.t)=V, (€. +0()

By means of (16) we rewrite formulae (14) and (15) in the form
w, (y,&%,t) =w’(y,8%,1) + O(e)
O, W, (y,&%,1) =9, w’(y,&%,1) +O(e)
aaﬁwe(yl g%t) = aaﬁwo(yl g%,t) +811HA(X!§2) VA(YvE;Z,t) +0(e)
€

Wi, (y, &%, 1) =W’ (y,8%,1) + O(e)

(17)

For a periodic approximation of Lagrangian A we have
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A2 e2 w0 e2 1) +0(e), 8,0 (L,£2,1) + O@), W (2, £%,1) + O(e),
e e e (18)

aaﬁw%faz,t)mnh" A(g,aZ)vA(g,aﬂt)w(s»

If € >0 then 7\9 by means of property of the mean value, Jikov et al. (1994), tends
weakly in to
Aole wo(ee t) o wo (e il (e t) o, we (e, thv, (o )=

[Alyee w6 thowo (e thwe (e thow (6 )+ a,h Ay, 2 Wale they.
| st
(19)

_1
A

Asymptotic action functional has the form

AS(wev,) jj(Ao4a W (9, 0,00 (), W 9,V (0, W () declt (20)
to I
where Lagrangian is given by
A, 4&“,W°,6QWO,WO\QB,VA‘ZZ, vA‘z,vA,w") =
L pems Wap Wiy + < D™ hAs1 >V, Wy +% <D™ hMuh®u >V, V, +
1 0,,,0 h? ap 0 0 1 ap 0 o 1 0, i 0 0
<k, >W W +—<k >3%0,W W +5 <N >0 W W ——<U>W W -<p>W.
2
(21)
From principle stationary action we can derive the Euler-Lagrange equations
A Ao A A
ﬁa-g ao +d, ao0 _agzo
ot oW W, ow',, )] ow
P ap (22)
A
A, =0, A=1...N
oV,

Substituting formulae (21) into equations (22), governing equations of the plate under

consideration take the form
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h2
(< D™ > W) o + (< DA > V) ot <k, > W —Taa (<k > a,w’) +

—(N“BWO\;;)‘&+ <u>w’=<p>

< D" hA > Woep+ < D™ hAu hPu >V, =0

(23)
Eliminating V, from second equation (23)
<D"™h®u >
V,=- w o, 24
A < D™h A\n hB\n > fm (24)
and denoting effective elastic moduli
11, B
D:;?yu — Daﬁw > _ <D h ‘11 > < DllthA‘ll >, (25)

1111, A B
<D h 11 h [11 >

we arrive the following equation of motion for the averaged displacement of the plate
midplane w°(£*,t)

2

h
afy 0 0 _ of 0y _ (N *Py/°
(< Dg™ >w \W)\aer <k, >w 2 0, (<k >8" 0,w") —(N*w ‘p)‘a . (26)

+<u>W=<p>

Equations (24)-(24) represent the asymptotic model of the stability behaviour of the plate
interacting with microheterogeneous subsoil.

The general results of contribution will be illustrated by analysis of the stability of
an annular plate resting on elastic heterogeneous foundation. Coefficients of model
equations (12), (26) are a smooth functions of radial coordinate p € (R,,R;), and in most

cases numerical methods have to be used in order to obtain solutions. In this contribution
in order to obtain the approximate solution of equations (26) will be used the Galerkin
method. Example of the obtained results will be given during presentation.
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